

The Role of SDN-NFV in Flexible Optical Networks: Current Status, Challenges and Opportunities

ICTON 2015 Budapest, Hungary Tuesday, 7 July, 2015

Daniel King

Senior Researcher, Lancaster University (BT & Intel, NFV Co-Lab) Co-Chair of SDN Internet Research Task Force (IRTF) Open Networking Foundation (ONF) Research Associate d.king@lancaster.ac.uk daniel.king@bt.com

Adrian Farrel

Old Dog Consulting adrian@olddog.co.uk

Nektarios Georgalas

Director BT & Intel Co-Lab, British Telecom nektarios.georgalas@bt.com

An opportunity for SDN & NFV

Variable bit-rate technology

- Flexible and Elastic Optical Networks
 - Photonic Integrated Circuit (PIC) technology
 - Paving the path towards cost effective transmission schemes beyond 100Gbps.
 - Digital Coherent and SuperChannel technology solutions
 - Variable >100Gbps client signals and cost effective >100Gbps transponders
 - Capable of long reach up to 400Gbps without regeneration
 - Cost effective and flexible transponders
 - The Sliceable-Bandwidth Variable Transponder (SBVT).
 - Reduce bandwidth to extend reach
 - More spectrum to extend reach
 - More bandwidth over short reach
- FlexGrid
 - A variable-sized optical frequency range
 - ITU-T Study Group 15 (www.itu.int/rec/T-REC-G.694.1)

Leveraging

FlexGrid with SDN & NFV

- The network architecture we developed is based on four technical cornerstones:
 - 1. An optical transport system enabling flexible transmission and switching up to, and beyond 400Gbps per channel.
 - 2. Hybrid control plane architecture for multi-layer and multi-domain optical transport network, extended for flexi-grid labels and variable bandwidth
 - 3. Dynamic network resources allocation at both IP and optical transport network. layer
 - 4. Leveraging Software Defined Networks and Network Functions Virtualisation paradigms
- Focus on standards-based development
 - Framework for GMPLS based control of Flexi-grid DWDM networks
 - Generalized Labels for the Flexi-Grid in LSC Label Switching Routers
 - GMPLS OSPF-TE Extensions in for Flexible Grid DWDM Networks
 - RSVP-TE Signaling Extensions in support of Flexible Grid
 - Extensions to PCEP for Hierarchical Path Computation Elements (H-PCE)
 - A YANG data model for FlexGrid Optical Networks

A Controller for

Optical Network Operations

- "SDN Controller" is a contentious term, it can have many different meanings:
 - Historically the term was derived from the network domain, technology and protocol mechanism
- SDN Controller wars are ongoing:
 - Operators have an expectation of standards-based technologies for deploying and operating networks
 - SDN controller vendors rarely provide multivendor interoperability using open standards
 - Provisioning should be a compelling feature of SDN, however many SDN controllers use non-standardised APIs
 - Recent Open Source initiatives tend to be vendor led
- Typically SDN controllers have a very limited view of topology, multi-layer and multi-domain scenarios are slowly being added
- Flexibility has been notably absent from most controller architectures both in terms of southbound protocol support and northbound application requests

Decomposition of an

Optical network controller

- Avoiding the mistake of a single "controller" architecture
 - As it encourages the expansion and use of specific protocols
- Discovery of network resources and topology management
- Network resource abstraction, and high-layer presentation
- Wavelength assignment and path computation
- Multi-layer coordination and interworking
 - Multi-domain & multi-vendor network resources provisioning through different control mechanisms (e.g., OpenFlow, ForCES)
- Policy Control
- OAM and Performance Monitoring
- Security & Resiliency
- A wide variety of southbound northbound protocol support
- Leveraging existing technologies
 - What is currently available?
 - Must integrate with existing and developing standards

What is an

Application-Based Network Operation?

- Applications-Based Network Operations (ABNO RFC7491)
 - A PCE-based Architecture for Application-based Network Operations https://tools.ietf.org/html/rfc7491
- Network Controller Framework
 - Avoiding single technology domain "controller" architecture
 - Reuse well-defined components
 - Support a variety of southbound protocols
 - Leveraging existing technologies, support new ones

6

ABNO for FlexGrid

Uses & Applications

- The network does not need to be seen any longer as a composition of individual elements
 - Applications need to be capable of interaction with the network.
- Support of the next generation of variable and dynamic optical transport characteristics
 - Multi-layer path provisioning
 - Network optimization after restoration
- Automated deployment and operation of services.
 - "Create a new transport connection for me"
 - "Reoptimize my network after restoration switching"
 - "Respond to how my network is being used"
 - "Schedule these services"
 - "Identify lease loaded links, and targets for future capacity planning"

ABNO

LANCASTER

Functional Components

- "Standardized" components
- Policy Management
- Network Topology
 - LSP-DB
 - TED
 - Inventory Management
- Path Computation and Traffic Engineering
 - PCE, PCC
 - Stateful & Stateless
 - Online & Offline
 - P2P, P2MP, MP2MP
- Multi-layer Coordination
 - Virtual Network Topology Manager
- Network Signaling & Programming
 - RSVP-TE
 - ForCES
 - OpenFlow
 - Interface to the Routing System
 - Emerging technologies: Segment Routing & Service Function Chaining

Is Content Delivery the

LANCASTER UNIVERSITY

"Killer Application" for SDN & NFV?

- Delivery of content, especially of video, is one of the major challenges of all operator networks due to massive growing amount of traffic.
- Complementary to the growth of today's Video Traffic
 - On-demand Content Services to internet end-users, with similar quality constraints as for traditional TV Service of Network Operators
 - Delivery of terrestrial transmissions over IP/optical networks
- Distribution of terrestrial transmissions:
 - Uncompressed: Serial Digital Interface (SDI)
 - Compressed: Motion JPEG

Name	Video	Bitrate
SD-SDI	480i/576i	270 Mbit/s
HD-SDI	720p/1080i	1.5 Gbit/s
3G-SDI	1080p	3 Gbit/s
6G UHD-SDI	4K 30fps	6 Gbit/s
12G UHD-SDI	4K 60fps	12 Gbit/s
24G UHD-SDI	4K 120fps	24 Gbit/s

SDN & NFV "Killer Application"

Content Distribution Network (CDN)

- The state of the s
- вт

- Design principles require an efficient, reliable and responsive CDN
 - Fault-tolerant network with appropriate load balancing
 - Performance of a CDN is typically characterized by the response time (i.e. latency) perceived by the end-users
 - Slow response time is the single greatest contributor to users abandoning content and web sites and processes
 - The performance of a CDN is affected by
 - Distributed content location
 - Switching mechanism
 - Data replication and caching strategies
 - Reliable functions and network connectivity

Blending SDN & NFV for the

Virtualized CDN (vCDN)

- SDN Network Control
 - Centralized control
 - Dynamic connectivity
 - Elastic bandwidth
- NFV Flexibility, Performance & Predictability
 - Performance: Mean Response Time, Latency, Hit Ratio Percentage, Number of Completed Requests, Rejection rate and Mean CDN load
 - Dimensioning: remaining stable whatever the use of virtualized HW resources for CDN components
 - Resource management: allow the right balance of network i/o to CPU power to storage i/o performance (e.g., RAM and HDD)
- Efficient use of resources (storage)
 - Fulfil specific storage density requirements, e.g. to cache a large catalog of popular content
- Deployment & Operational tools
 - Compliance of cache nodes with main monitoring and reporting requirements (e.g., JSON, YANG, SNMP, syslog, etc.) so that operator is able to manage different types of cache nodes together for a Delivery Service
- Content Management
 - Ability to select specific cached content (e.g., video/HTTP) and replicate/duplicate these selected content
 items during delivery via virtual switching to a Quality of Experience (QoE) virtualized function without
 degrading the overall performance of the virtualized CDN function

Yes, but.

Is it actually being used/developed?

- EC-Funded Projects investigating, using and/or developing ABNO
 - FI-PPP XIFI
 - FP7 OFERTIE
 - FP7 DISCUS
 - FP7 CONTENT
 - FP7 PACE (ict-pace.net) Next Steps for the Path Computation Element
- Deployments and Code Availability
 - iONE, Universitat Politècnica de Catalunya (UPC) (OpenSource)
 - ANM, Telefonica (OpenSource)
 - Infinera (Closed Proof of concept)
- Publications & Standards
 - A PCE-Based Architecture for Application-Based Network Operations, IETF RFC7491
 - Unanswered Questions in the Path Computation Element Architecture, IETF RFC7399
 - "In-Operation Network Planning", IEEE Communications Magazine
 - "Adaptive Network Manager: Coordinating Operations in Flex-grid Networks", ICTON (IEEE)
 - "Experimental Demonstration of an Active Stateful PCE performing Elastic Operations and Hitless Defragmentation", ECOC European Conference on Optical Communications
 - "Planning Fixed to Flexgrid Gradual Migration: Drivers and Open Issues", IEEE Communications Magazine
 - "Dynamic Restoration in Multi-layer IP/MPLS-over-Flexgrid Networks", IEEE Design of Reliable Communication Networks (DRCN)
 - "A Traffic Intensity Model for Flexgrid Optical Network Planning under Dynamic Traffic Operation", OSA Optical Fiber Communication (OFC)
 - And many, many more...

Future research and investigations

Where next?

- Commercializing ABNO for video distribution and storage
 - Ongoing re-use of components and protocols, and extending where necessary, makes sense

- Implementing a controller as a distinct unit with the SDN architecture provides a number of benefits:
 - Scaling
 - Load-balancing
 - Resilience
 - Multiple forwarding technology support (various optic flavours)
 - Rapid advancement of algorithms, the next disruptive wave of innovation will be Machine Learning (ML)
- Therefore, SDN should be seen as a critical part of a wider view of network operation
- However, gaps exist!

Assuming a basis for a controller

How to do we integrate into the orchestrator?

- Application specific orchestration layer needed
 - Can this ever be generalized to be application agnostic?
 - How might we define the service?
 - Are service information models are available?
- Optimization being performed in multiple layers
 - If using PCE, where should the PCE element(s) actually be located?
 - Is the PCE a candidate for Network Functions Virtualisation (NFV)?
 - How do we scale, load balance and ensure resilience for?
 - Speed at which path computations are provided
- Can paths be determined and provisioned any quicker?
 - How can we combine offline (planning) and online (real-time) requests?
- Multi-layer support (packet layer over flexible optical networks)
 - Placement of video services at both the packet and optical layer (bandwidth dependent)
- Application of Policy/Intent when computing computation paths and configuring equipment

Optical network modeling

- Continue to develop YANG data and information models
 - Please see later presentation & paper.

Resource Management & Optimisation

- Resource representation
 - Meta models for VNFs and infrastructure
- Consideration and operation of various optimisation goals:
 - Time
 - Performance
 - Cost
 - Reliability
 - Minimising the resource footprint
 - Power Consumption

Service Level Agreement Management

The state of the s

• Translate consumer demands into a service and application definition

- Encode performance qualities
- Specify resource and QoS requirements
- Mask resource details, queue data and current workload
- Combination and management of several SLAs relevant at various levels
 - High-level, human-readable SLAs
 - Technology SLAs within the middleware to guarantee service provisioning

Performance Monitoring and Measurement

- Infrastructure analytics and visualisation
- Composite metrics
- Simulations and "what if" scenario testing
- Hardware performance monitoring

Thank You!

Any comments or questions are welcome.

ICTON 2015 Budapest, Hungary Tuesday, 7 July, 2015

Daniel King

Senior Researcher, Lancaster University (BT & Intel, NFV Co-Lab) Co-Chair of SDN Internet Research Task Force (IRTF) Open Networking Foundation (ONF) Research Associate d.king@lancaster.ac.uk daniel.king@bt.com

Adrian Farrel

Old Dog Consulting adrian@olddog.co.uk

Nektarios Georgalas

Director BT & Intel Co-Lab, British Telecom nektarios.georgalas@bt.com

