
Architecture for Scheduled Use of Resources
draft-zhuang-teas-scheduled-resources-00

Yan Zhuang (zhuangyan.zhuang@huawei.com)
Qin Wu (bill.wu@huawei.com)

Adrian Farrel (adrian@olddog.co.uk)

IETF-94 : Yokohama : November 2015

What are the Services?
• The services we are considering are LSPs that reserve

bandwidth
– Any type of LSP
– Bandwidth is basically “network resources”

• The value-add is that services can be booked for a time-slot
in the future
– “Guaranteed” to be provided

• Unless something changes!

• Further option is to vary an existing or booked service
during a time window in the future
– Add or reduce bandwidth for a period

• Services are used
– When there are limited physical resources

• Booking wavelengths in optical networks

– To make maximal use of resources in networks
• Data centre inter-connect

Why This Draft?

• In Prague we noticed two drafts proposing solutions in
this space
– draft-zhuang-pce-stateful-pce-lsp-scheduling
– draft-chen-pce-tts

• There is also some older work
– draft-yong-ccamp-ason-gmpls-autobw-service
– draft-zhang-pce-stateful-time-based-scheduling

• These drafts had different approaches and some
unresolved issues

• It seems helpful to step back and look at the issues and
architecture before working on solutions
– TEAS is the right place to do this TE architecture work

What Does the Draft Do?
• Aims to get us all on the same page

– Provide a reference for future work

• How?
– Present a problem statement

• When and why reserve resources?
• What can go wrong if you don’t?

– Describes the architectural concepts
• Scheduling state: what and where
• Discusses pros and cons of options
• Recommends an architectural approach

– Architectural overview
• Figure
• Service request processing
• Initialisation and recover processing

Why do We Need the State?

• Want to maximise chance of service being
delivered

– Avoid contention for resources

• Time arrives and resource is in use by someone else

• Pre-emption is disruptive

• Make-before-break re-optimization takes time

– Which resources can we take out of service?

• When is it safe?

• When must they be returned?

• Which planned services need to be re-planned or alerted?

What is the State We Need to Store?
• State applies to

– The resources on a path through the network
– The timing of reservation of those resources

 { link id;
 resource id or reserved capacity;
 start time;
 end time }

• How much state is this?
– How many start times do we need to support?

• What is the arrival rate?
– How long is a resource booked for?

• What is the hold time?
• This question can be mitigated by:

– Can we set a limited horizon?
• How far into the future do we look?

– Can we reduce the granularity?
• Can we operate in one hour units, or 10 minutes, or 30 seconds, or

one week?

Where do we Need the State?

• It depends on the architecture and who can request services
• Range of options…

– Many applications can create “on-demand” services
– Many applications can book resources
– Centralised control of booking
– Centralised control of all services

• These choices lead us to…
– State is needed where time-based path computation is done
– State is needed where on-demand path computation is done
– State is needed where resources are reserved

• This is a philosophical question that substantially changes:
– What function we can provide
– What changes to protocols we make
– What to implement

What do we mean by “distributed state”?

• We could mean
– State is held where the resource exists

• This prevents other services stealing the resource

• But is doesn’t help other computation nodes

– State is held “everywhere” in the network
• Prevents stealing resources

• But that is unlikely to be an issue because all path
computation nodes can see what bookings exist
– PCE servers

– NMS / SDN controllers

– Head-end LSRs requesting new services

How to Achieve Distributed State

• It all depends on the service architecture

• If we have centralised computation, but want
to police reservations
– State is in the PCE and stored in the network

nodes

• If we have distributed computation and want
to police reservations
– State is in the network nodes and needs to be

distributed to all points of computation

Why are People Concerned with
Distributed State?

• It’s a question of volume of data
– If a node has 100 interfaces that can support 10,000 TE

LSPs each, there is already some “interesting” challenges
for state maintenance for a single point in time (i.e., now)

– Suppose we allow booking in 15 minute intervals for a
period of one month into the future
• That is up to 4*24*30 = 2880 times as much state

– In reality
• One month may be too short

• State can be considerably compressed

• If “future LSPs” are installed using RSVP-TE, then each
such LSP also requires considerable RSVP protocol state

How Does Distributed State Persist?

• If state is installed by RSVP-TE we have to
address the question of how the “future LSPs”
survive network faults
– We can use all of the soft-state/hard-state work

– We can use RSVP-TE Recovery processing

– But there is potentially a lot of processing to be
done

• If state is installed some other way
– That state needs to be resynched on recovery

Why are People Concerned by
Distributing State?

• Suppose we want every node in the network to
know about the scheduling state
– This is no different from wanting every node to know

about the other TE state

– So we could use the IGP?
• It is potentially a lot of information

• The IGP has to refresh all information periodically (unless we
change it)

• The information must be advertised as new services are
booked

• Every node in the network has to hold all of the booking
information for the whole network

Which leads to the alternative…

• Scheduling information is only held centrally

• This fits well with an active stateful PCE approach

– Update the TED to show future reservations

– Allow the LSPDB to hold future LSPs

• Can we integrate this with

– Stateless PCE uses

• Yes: easy

– On-demand, non-PCE LSPs

• Yes: no different from resource failures!

Details, details

• No changes to Signaling, IGPs, BGP-LS, information stored in the
network

• Updates to PCEP to show LSP timing
• Synchronising databases between PCEs

– It is messy, but no different from synching timeless LSPDBs

• Handling multiple PCEs for the same network
– This is no different from today!
– Two PCEs might both assign the same resources at the same time

• At least with scheduling there is a chance to resolve this before the user
notices

• Handling cooperating PCEs
– We don’t think this changes
– PCEs cooperate using PCReq

• When one PCE responds to another, it “guarantees” a reservation
• This might need to be released if not used

Warning to All Users!

• When a PCE agrees to a scheduled service,
this is not a guarantee!

– Network resources may fail

– A more important user may come along

• The scheduling service is:

– “We will try to deliver, possibly using re-routing,
and let you know if the situation changes”

Next Steps for This Work

• Discuss to see whether we all agree

– Early email exchanges suggest

• Mainly agreement

• Some desire to support distributed state

• Concern to work through the details

• Decide whether this needs to be codified as
an RFC by the TEAS WG

– We could just discuss, agree, and move on

