MPLS 2008

11TH ANNUAL CONFERENCE

Path Computation Element (PCE)

Adrian Farrel
Old Dog Consulting
adrian@olddog.co.uk

www.mpls2008.com

Agenda

- Historic Drivers
- Generic Requirements
- Architectural Overview
- Discovering PCEs
- PCEP The Basics of the PCE Protocol
- Usage Scenarios
- Core Protocol Extensions
- Advanced Uses and The Future

Background – MPLS Traffic Engineering

- Objectives are to improve network efficiency, increase traffic performance, reduce costs, and increase profitability
- Adaptive to network changes
- Increasingly achieved through MPLS
- As easy to get wrong as to get right!
- Requires
 - Knowledge of available network resources
 - Understanding of service requirements
 - Planning (computation) of LSP placement
 - Control of provisioning and resource reservation

Historic Drivers

- Virtual PoP
 - Need an MPLS tunnel across a foreign network
 - Guaranteed QoS etc.
- Source domain must decide the correct peering point
 - Should ideally be able to request the LSP "on-demand"

Definition – The Domain

- A domain is defined as
 - Any collection of network elements within a common sphere of address management or path computational responsibility (RFC 4726 and RFC 4655)
- Classic examples...
 - IGP Areas
 - Autonomous Systems
- More complex examples...
 - Network technology layers
 - Client/server networks
 - Protection domains
 - ITU-T sub-networks
- For us, the problem is the path computational responsibility
 - We need to plan (compute) an end-to-end path
 - But we can only see our domain

Historic Operation – Path Computation

- Path computation limited to within a domain
 - Responsibility of a management/planning station
 - Provisioning based on pre-computed paths
 - Provisioning through management plane or control plane
 - Delegated to an "intelligent control plane"
 - Computation on the head-end LSR
- Domain interconnects by prior arrangement
 - Good for policy and administrative control
 - Bad for responsiveness and dynamic use of resources
 - Not flexible to changes in the network
 - High operational overhead

The Problem of Multi-Domain Path Computation

- The Internet is built from administrative domains
 - Scaling reasons
 - Administrative and commercial reasons
- These are IGP areas and Autonomous Systems
- Routing information is not distributed between domains
 - To do so would break
 - Scaling
 - Commercial confidentiality
- Distribution of TE information follows the same rules
 - See RFC 4105 Requirements for Support of Inter-Area and Inter-AS MPLS-TE
 - See RFC 4216 MPLS Inter-AS Traffic Engineering Requirements"
- But, to compute a path we need to be able to see the available links along the whole path

Old Dog Consulting

Issues for Routing in Multi-Domain Networks

- The lack of full topology and TE information
- No single node has the full visibility to determine an optimal or even feasible end-to-end path
- How to select the exit point and next domain boundary from a domain
- How can a head-end determine which domains should be used for the end-to-end path?
- Information exchange across multiple domains is limited due to the lack of trust relationship, security issues, or scalability issues even if there is trust relationship between domains

Old Dog Consulting

TE Abstraction/Aggregation - A Potential Solution

- All we need to know is
 - Details of local domain
 - The connectivity between domains
 - The destination domain to reach
- TE aggregation looks very promising
 - Provide enough information to compute, but still scale
 - But aggregation reduces available information so optimality is in doubt

Approaches to TE Aggregation

Virtual Link

- "You can reach this destination across this domain with these characteristics"
- BGP-TE model
- Requires large amount of information

Needs compromises and frequent updates

Virtual Node

- Hierarchical abstraction
- Presents subnetwork as a virtual switch
- Can be very deceptive
 - No easy way to advertise "limited cross-connect capabilities"

Virtual Node aggregation hides internal connectivity issues

Virtual Link aggregation needs compromises and

frequent updates

Both rely on crankback signaling and high CPU aggregation

Architectural Concept

- We need some abstract mechanism to compute paths
 - "An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and applying computational constraints" (RFC4655)
- PCE is a path computation element (e.g., server) that specializes in complex path computation on behalf of its path computation client (PCC)
- PCEs collect TE information
 - They can "see" within the domain

The All-Seeing Eye — A Myth

NMS

Path Computation – An LER Function

- Path computation is a logical functional component of LERs in existing MPLS-TE deployments
 - NMS sends request to the LER asking for an LSP
 - 2. LER performs a path computation
 - 3. LSP is signaled
 - 4. LSP is established

Old Dog Consulting

NMS

Path Computation as an NMS Feature

- Path computation is a logical functional component in many management systems
 - NMS performs a path computation
 - NMS sends request to the LER specifying LSP route
 - 3. LSP is signaled

The Traffic Engineering Database

- Path computation requires knowledge of the available network resources
 - Nodes and links
 - Constraints
 - Connectivity
 - Available bandwidth
 - Link costs
- This is the Traffic Engineering Database (TED)
- TED may be built from
 - Information distributed by a routing protocol
 - OSPF-TE and ISIS-TE
 - Information gathered from an inventory management system
 - Information configured directly

The PCE Server and the PCC

- Embedded path computation capabilities
 - Part of the functional model
 - Not very exciting for building networks!
- Path Computation Element (PCE)
 - The remote component that provides path computation
 - May be located in an LSR, NMS, or dedicated server
- Path Computation Client (PCC)
 - The network element that requests computation services
 - Typically an LSR
 - Any network element including NMS

Abstracting The Path Computation Function

"An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and applying computational constraints" - RFC 4655

- What's new?
 - Nothing!
 - A formalisation of the functional architecture
 - The ability to perform path computation as a (remote) service

17

Old Dog Consulting

PCC-PCE Communications

- Fundamental to a remote PCE is PCC-PCE communication
- PCC requests a computation
 - From where to where?
 - What type of path? (Constraints)
 - Bandwidth requirement
 - Cost limits, etc.
 - Diversity requirements
- PCE responds with a path (or failure)
 - Details of route of path
 - Details of parameters of path
 - Actual cost, bandwidth, etc.

Multi-Domain PCE

- A single PCE cannot compute a multi-domain path
 - By definition, a PCE can only see inside its domain
- Computation of a multi-domain path may use cooperating PCEs
 - PCEs may need to communicate
 - One PCE may send a path computation request to another PCE
 - The first PCE acts as a PCC and the communication is exactly as already described
- Recall: multi-domain path computation is what we are doing this for

Old Dog Consulting

Discovering PCEs

- Each PCC needs to know about a PCE
- Maybe more than one PCE
 - Load sharing
 - Different capabilities
 - Support for different constraints
 - Different algorithms
 - Path diversity
- Configuration is an option
 - Management overhead
 - Not flexible to change
- Discovery is the best mechanism
 - Achieved with extensions to the IGP routing protocols

Protocol Extensions

- PCE is probably already participating in the IGP
 - The PCE may be a router (for example, ABR or ASBR)
 - The PCE needs to build the TED
- Advertisement of "optional router capabilities"
 - RFC 4970 for OSPF
 - The Router Information LSA
 - RFC 4971 for IS-IS
 - The Capability TLV
- Define TLVs to carry PCE capabilities
 - RFC 5088 for OSPF
 - RFC 5089 for IS-IS
- TLVs defined for:
 - The IP address of the PCE
 - The domain scope that the PCE can act on
 - The domain(s) in which the PCE can compute paths
 - Neighboring domains toward which the PEC can compute paths
 Capability flags

Old Dog Consulting

Future Discovery Protocol Extensions

- The Router Information LSA and Capabilities TLV are overloaded
 - They are used for different applications
- Future PCE discovery information must be carried in some other way
 - Define a PCE LSA and a PCE TLV
 - Will cause some migration issues
- Exception is capabilities flags that an continue to be used up

PCEP - The Basics of the PCE Protocol

- A request/response protocols
- Operates over TCP
 - Reliability and in-order delivery
 - Security delegated to TCP security issues
- Session-based protocol
 - PCE and PCC open a session
 - Negotiate parameters and learn capabilities
 - All message exchanges within the scope of the session
- Seven messages
 - Open
 - Keepalive
 - Request
 - Response
 - Notify
 - Error
 - Close

Session Creation

- TCP registered port
 - One connection between any pair of addresses
- Independent two-way exchange of PCEP Open messages
 - Negotiate session capabilities and parameters
 - Accepted with Keepalive message
 - Rejected (for negotiation) with Error message

Session Maintenance

- TCP is not so good at detecting connection failures
 - Connection failure breaks the PCEP session
 - Means that outstanding requests will not get responses
- Many protocols run their own keepalive mechanisms
- The PCEP keepalive process is asymmetrical
 - The Keepalive message is a beacon
 - It is not responded
 - The frequency is set by the receiver on the Open message
 - The session has failed if no Keepalive is received in the Dead Timer period
 - Usually four times the keepalive period

PCC		PCE
	KEEPALIVE	
	25	

Request / Response Information

- PCReq message asks for a path computation
 - Start and end points
 - Basic constraints
 - Bandwidth
 - LSP attributes
 - Setup/holding priorities
 - Path inclusions
 - Metric to optimise
 - IGP metric
 - TE metric
 - Hop count
 - Associated paths
- PCRep reports the computed path
 - Explicit route
 - Actual path metrics
 - (Or the failure to find a path)

Multi-Domain Usage Scenarios

- The main purpose of PCE is to solve the multi-domain problem
 - Compute paths across multiple domains
- Three main methods have already been defined
 - Per-domain path computation
 - Simple cooperating PCEs
 - Backward Recursive Path Computation

Per-Domain Path Computation

- Computational responsibility rests with domain entry point
- Path is computed across domain (or to destination)
- Simple mechanism works well for basic problems or for "good-enough" paths
- Which domain exit to choose for connectivity?
 - Follow IP routing? First approximation in IP/MPLS networks
 - Sequence of domains may be "known"
- Which domain exit to choose for optimality?

Issues with Per-Domain Computation

- Choice of successive domains
 - PCE1 does not know where the destination is
 - Does it choose the path ACE or the path ABDF?
- There are some signaling solutions that can help
 - For example, crankback
 - Can be very slow and complicated

Issues with Per-Domain Computation

- Multiple connections between domains
- PCE1 will select the path ACEG toward the destination
 - Results in the path ACEGIKLM (path length 7)
- A better path would be ABDFHJM (path length 6)
- PCE1 cannot know this

Issues with Per-Domain Computation

- Disjoint paths (for example, for protection)
- PCE1 supplies {ACEG and ABDFH}
 - Disjoint in first network
- Separate requests are made to PCE2 from G and H
 - Results in shortest paths in second network {GIKN and HJKN}
- Resulting paths ACEGIKN and ABDFHJN are not disjoint
 - Link KN is shared
- A possible solution exists {ACEGIKN and ABDFHJLMN}
 - There may be some signaling solutions to this problem in some scenarios

A Simple Example – Cooperating PCEs

Issues with Simple Cooperating PCEs

- More than two domains in sequence gets complicated
- Not enough to supply the best path in one domain
 - Hard to achieve optimality
 - The best end-to-end path may use none of the bests paths from each domain

Backward Recursive Path Computation

- PCE cooperation
 - Can achieve optimality without full visibility
 - "Crankback at computation time"
- Backward Recursive Path Computation is one mechanism
 - Assumes each PCE can compute any path across a domain
 - Assumes each PCE knows a PCE for the neighbouring domains
 - Assumes destination domain is known
- Start at the destination domain
 - Compute optimal path from each entry point
 - Pass the set of paths to the neighbouring PCEs
- At each PCE in turn
 - Compute the optimal paths from each entry point to each exit point
 - Build a tree of potential paths rooted at the destination
 - Prune out branches where there is no/inadequate reachability
- If the sequence of domains is "known" the procedure is neater

BRPC Example

- PCE3 considers:
 - QTV cost 2; QTSRV cost 4
 - RSTV cost 3; RV cost 1
 - UV cost 1
- PCE3 supplies PCE2 with a path tree -
- PCE2 considers
 - **GMQ..V** cost 4; GIJLNPR..V cost 7; GIJLNPQ..V cost 8
 - HIJLNPR..V cost 7; HIGMQ..V cost 6; HIJLNPQ..V cost 8
 - KNPR..V cost 4; KNPQ..V cost 5; KNLJIGMQ..V cost 9
- PCE2 supplies PCE 1 with a path tree -
- PCE1 considers
 - ABCDEG..V cost 9
 - AFH..V cost 8
- PCE1 selects AFHIGMQTV cost 8

Old Dog Consulting

Problems with BRPC

- Destination domain must be known
 - Maybe not unreasonable
 - Destination is known, so destination domain may be known
 - Some mechanisms (like BGP) can distribute location
- Otherwise, need a mechanism to find the destination
 - BGP may suggest a sequence of domains for reachability
 - Works in IP networks
 - Might not be optimal in TE cases
 - IP might not be present (e.g., optical networks)
- Future work
 - "Forward Recursive Path Computation"
 - What is special about backward recursion?
 - "Hierarchical PCE"
- MPLS 2008

Discussed later

Problems with BRPC

- Navigating a mesh of domains may be complex
 - Even in a relatively simple example
- PCE4 supplies path trees to PCE2 and PCE3
- PCE2 supplies a tree to PCE3 and PCE3 supplies a tree to PCE2
- PCE1 receives trees from PCE2 and PCE3
 - Maybe several times
- Problem eased by knowing sequence of domains in advance
 - Still some issues with multiple connections

Core Protocol Extensions

- Explicit route exclusions
 - Identify resources to exclude from the computed path
- Path confidentiality
 - Compute full paths but hide the details of the results
- Objective functions
 - Control of how the PCE interprets the metrics
- DiffServ support
 - Simple additions to specify the DiffServ Class Type

Explicit Route Exclusions

- Operational requirements
 - Find a path that avoids a specific node or link
 - Known issues or reliability or maintenance
 - Find a path that avoids another path
 - Protection function
- Route exclusion allows specification of resources to avoid
 - labels, links, nodes, domains, and SRLGs
- Just another object in the PCReq

Path Confidentiality

- Cooperative PCEs exchange path information
 - This is transferred to signaling to set up the LSP
- But a path fragment reveals information about a domain
 - Some ASes will not want to share this information
 - Confidentiality
 - Security
- Could use loose hops or domain identifiers
 - This hides information efficiently
 - Forces a second computation to be performed during signaling
 - Might lose diversity
- A PCE can replace a path segment with a token
 - We call this a path key
- Could be anything
 - No semantic outside the context of the PCE
- De-referenced on entry to a domain

Path Keys

Objective Functions

- PCEP allows us to convey
 - Path end points
 - Desired path constraints (e.g. bandwidth)
 - Computed path
 - Aggregate path constraints (e.g. path cost)
- But how do we control the way the PCE computes the path?
- An objective function specifies the desired outcome of the computation (not the algorithm to use)
- These can be communicated in a new object
 - Minimum cost path
 - Minimum load path
 - Maximum residual bandwidth path
 - Minimize aggregate bandwidth consumption
 - Minimize the load of the most loaded link
 - Minimize the cumulative cost of a set of paths

Advanced Uses

- PCE has become a very powerful concept
- It is being actively examined for use in a wide range of MPLS and GMPLS computation problems
 - Point-to-multipoint LSPs
 - Global concurrent optimization
 - Optical networks
 - VPN management
 - Inter-layer path computation
 - Service and policy management
 - New PCE cooperation techniques
 - Operation of ASON routing
 - Routing multi-segment pseudowires

Point-to-Multipoint Computation Requirements

- Support of complex services
 - High levels of QoS demand multiple constraints
 - Minimal cost, minimal delay, high bandwidth, etc.
 - Computing a minimum-cost tree (Steiner tree) is NP-hard
 - Constraints may conflict with each other
 - Many multiple 'parallel' connections to support one service
- Path diversity or congruence
 - End-to-end protection with link, node, or SRLG diversity
 - Mesh (m:n) service protection
 - Congruent paths for fate-sharing (e.g. virtual concatenation)
- Control of branching points
- Global concurrent network optimisation
 - Compute multiple trees and consider moving existing trees to accommodate new trees
 - Consider multiple complex constraints, including lower (optical) constraints

Old Dog Consulting

Global Concurrent Optimization (GCO)

Sequential path computation can lead to classic "trap" problems

- More likely to arise in larger networks with more LSPs
- Standard PCEP allows a PCC to submit related requests for simultaneous computation
- Trap problems can also arise from multiple head-ends
- GCO allows the coordination of computation of multiple paths
 - Particularly useful for re-optimization of busy networks
 - May require consideration of migration paths

Optical Networks

- Optical network path computation can be split
 - Impairment-free networks
 - The main problem is selecting paths with a continuous wavelength end-to-end
 - The Routing and Wavelength Assignment problem (RWA)
 - Somewhat more complicated than normal CSPF
 - Networks with Optical Impairments
 - Power levels, OSNR, PMD, etc.
 - Very complex path computations
- Large amounts of information required
- Considerable processing requirements
- Optical devices have limited CPU and memory
- Makes sense to devolve path computation to a dedicated server
- A lot of path planning in these networks is off-line

VPN Management

- VPNs provide several routing problems
- Network resources may be partitioned for VPNs
 - There may be policies about how resources are used
 - There may be policies about which VPNs can share
- Network resources may be shared between VPNs
 - PEs will not know how the network is currently used
- CEs may be multi-homed and need to select a PE
 - The PEs may have different connectivity
- Addresses may be scoped per VPN
- Multi-cast VPNs are becoming important

Inter-Layer Path Computation

- Client/server networks
- Several PCE models
 - Single PCE with multi-layer visibility
 - Two TE domains, but one PCE can see both of them
 - Two PCEs without cooperation
 - Per-domain path computation is used
 - Two PCEs with cooperation
 - Some mechanism such as BRPC is used
 - Separate PCEs with management coordination
 - Allows the server network to retain control of expensive transport resources

Old Dog Consulting

Virtual Network Topology Manager Interactions with PCE

- VNT Manager is a policy/management component
- Acts on triggers (operator request for a client TE link, client network traffic demand info, client TE link usage info, client path computation failure notification)
- Uses PCE to determine paths in lower layer
- Uses management systems to provision LSPs and cause them to be advertised as TE links in the client layer

Service Management

- ITU-T's Resource and Admission Control Function (RACF)
 - Plans and operates network connectivity in support of services
- Policy Decision Functional Entity
 - Examines how to meet the service requirements using the available resources
- Transport Resource Controller Functional Entity
 - Provisions connectivity in the network (may use control plane)

Integration with Policy

- Policy is fundamental to PCE
 - What should a PCC do when it needs a path?
 - What should a PCE do when it gets a computation request?
 - Which algorithms should a PCE use?
 - How should PCEs cooperate?
- RACF PD-FE is a policy component that could use PCE
- Inter-domain paths are subject to Business Policy
 - IPsphere Forum is working on business boundaries
 - Business policy may guide PCE in its operation
 - Selection of domains based on business parameters is a path computation that PCE could help with

Old Dog Consulting

Hierarchical PCE

- A solution to inter-domain TE routing may be hierarchical PCEs
 - Recall that BRPC does not scale well with complex interconnection of domains
- Hierarchical PCE is *not* an all-seeing eye!
 - It knows connectedness of domains
 - It provides consultative coordination of subsidiary PCEs
- Per-domain PCEs can be invoked simultaneously

PCE in ASON

- ITU's Automatically Switched Optical Network uses hierarchical routing
 - Networks are constructed from sub-networks
 - Administrative domains
 - Clusters of single-vendor equipment
 - Topological entities (rings, protection domains, etc.)
 - Routing Areas have containment relationships
 - Routing controllers share information between peers
 - There is a parent-child relationship between routing controllers
- Fits particularly well with the hierarchical PCE model

Pseudowire Routing

- Pseudowire networks create a multi-layer routing problem
 - Establishment and routing of LSP tunnels
 - Choice of LSP tunnels to carry pseudowires
 - Choice of "parallel" pseudowires
 - Choice of switching PEs
 - Choice of terminating PEs
- Problem extends to point-to-multipoint pseudowires

■ These problems is not properly addressed at the moment

Summary

- PCE is a logical functional component
 - It may be centralized within a domain or distributed
 - It is *not* an all-seeing oracle
- PCEs may cooperate to determine end-to-end multidomain paths
- The PCEP protocol is quite simple
 - It can carry lot of information
- The PCE concept is already implemented for MPLS-TE
- PCE is drawing a lot of interest in a wide variety of environments

Old Dog Consulting

References

- The Internet Engineering Task Force (IETF) is the main originating body for PCE
 - See the PCE working group home page http://www.ietf.org/html.charters/pce-charter.html
 - The key documents are
 - RFC 4655 A Path Computation Element (PCE)-Based Architecture
 - RFC 5088 OSPF Protocol Extensions for Path Computation Element (PCE) Discovery
 - draft-ietf-pce-pcep-15.txt Path Computation Element (PCE) Communication Protocol (PCEP)
- The IPsphere Forum can be found at http://www.ipsphereforum.org
- The ITU-T has worked on several relevant documents
 - Access documents via http://www.itu.int/publications/sector.aspx?sector=2
 - G.7715.2 ASON routing architecture and requirements for remote route query
 - Y.2111 Resource and admission control functions in Next Generation Networks

Questions adrian@olddog.co.uk

PCE Working Group http://www.ietf.org/html.charters/pce-charter.html

