Network Slicing and Enhanced VPNs

Adrian Farrel : Old Dog Consulting
<adrian@olddog.co.uk>

India Internet Engineering Society (IIESoc)
Connections : A pre-IETF India Forum, November 13th - November 14th, 2019
Agenda

• Virtual Connections and Virtual Networks
• Abstraction of TE Networks
• Network Slicing
• ACTN
• SDN and YANG Models
• Enhanced VPN (VPN+)
• References
Early Services Were Simple Connectivity

- Virtual Links, Private Lines, or Pseudowires
 - Connecting two sites over a shared infrastructure
- Sites consider themselves connected by a physical link
 - Service provided by the network meets a Service Level Agreement
 - Essentially a layer 2 service
Connectivity Services Developed into Virtual LANs

- Models basic LAN service
- Also a layer 2 service
 - Relatively simple SLA
Virtual Private Networks

• A generalisation of layer 2 connectivity services
• Also a very popular layer 3 service
 – Provides routed IP full or partial mesh
• VPN was the killer application for MPLS
• A VPN is virtual
 – It is not really a Network, but behaves somewhat like one
 – It is not really Private
 • Network resources are shared
Topology Aggregation

• Abstraction Layer Network

Client layer resources: C1, C2, C3, C4
Server layer resources: CN1, CN2, CN3, CN4, CN5
Abstraction layer resources:
 Nodes: C2, CN1, CN3, CN5, C3
 Physical links: C2-CN1, CN5-C3
 Abstract links: CN1-CN3, CN3-CN5
Abstraction Leads to Virtualization

- Abstraction is about providing a summarised topology of potential connectivity
- Policy-based
 - Policies set by one network with knowledge of the other networks
 - Overcome issues of scaling, stability, confidentiality, and misinformation found in aggregation
 - Hint: virtual node representations may struggle
- Apply policy to the available TE information within a domain, to produce selective information that represents the potential ability to connect across the domain
 - Don’t necessarily offer all possible connectivity options
 - Present a general view of potential connectivity
 - Consider commercial and operational realities
- Retain as much useful information as possible while removing the data that is not needed
- Can be further filtered to provide different views for different consumers
Virtual Networks (VNs)

- Network abstraction aggregates resources into
 - Virtual links (made from TE tunnels across links and nodes)
 - Abstract nodes (made from nodes and links)
- Describes edge-to-edge connectivity with certain qualities
- Available connectivity can be presented to the VN user (customer)
 - They can manipulate the VN as their own private network
Application of VNs

• The VN concept covers a wide range of applications
 – Simple connectivity services (such as VPNs)
 – Enhanced connectivity services (such as VPNs with different per-site bandwidths)
 – Customer managed connectivity services (adding sites, connectivity, and bandwidth)
 – Customer-operated higher layer networks build from lower layer connectivity
 • Carrier’s carrier
 • IP division as a client of the transport division
The Traffic Engineering Database

- A collection of information about the network
- The topology of the controlled network
 - Nodes
 - Links
 - Nodes/Links connectivity
- The available resources and attributes
 - Available Link Bandwidth
 - Link Metrics (e.g., costs)
- The TED is an essential internal component of a Path Computation Element (PCE)
 - Provides the updated snapshot of the controlled network and its resources
 - PCE algorithms resort to TED as primary information source input
The Traffic Engineering Database

- Traffic Engineering Database (TED) is essential internal component of a PCE
 - provides the updated snapshot of the controlled network and its resources
 - PCE algorithms resort to TED as primary information source input
Building the TED from the Network

- This is the process of building a model of the network
 - Different mechanisms may be used
 - The functional architecture doesn’t care how the TED is built

- Information can come from different sources
 - From the network
 - From management systems
 - Through policy

- All kinds of ways to get information from the network
 - Passive peering with OSPF-TE or IS-IS-TE
 - Through Link State BGP (BGP-LS)
 - Reading from the network devices (e.g., YANG)
 - PCEP Notifications

- Abstraction can be done by:
 - The receiver of the information applying policy (e.g., OSPF plus policy)
 - The exporter of the information applying policy (e.g., BGP-LS plus policy)
Application-Based Network Operations (ABNO)

- First attempt at describing a system for network virtualisation
 - Pull together many components already described by the IETF
 - RFC 7491
- Path Computation and Traffic Engineering
 - Network Topology (LSP-DB, TED, Inventory Management)
 - PCE, PCC (RFC 4655)
 - Online & Offline (RFC 7399)
 - Stateful & Stateless (RFC 8231)
- Service Coordination
 - Application-Layer Traffic Optimization (ALTO) (RFC 5693)
- Multi-layer Coordination
 - Virtual Network Topology Manager (RFC 5623)
- Network Signalling & Programming
 - RSVP-TE (RFC 3209)
 - OpenFlow
 - Interface to the Routing System (RFC 7921)
- Additional components
 - ABNO Controller (Orchestrator)
 - Policy Agent
 - OAM Handler
 - Provisioning Manager
Slicing the Network

• Consider network resource separation
 – Partitioning the resources of a network for specific uses
 – Not a new thing:
 • VPNs, virtual networks, overlay networks
 • RSVP-TE, queuing/buffering schemes
 – Current interest is driven by 5G
 • But take care!
 – Slicing in the 5G radio network is not slicing in the Aggregation or Transport network
 – The granularity is completely different

• Aim to guarantee a level of service delivery without impacting or being impacted by other services
 – Service level can be:
 • Throughput
 • Latency
 • Jitter

• Reserving resources in a network for a customer or service
 – “Resources” may be:
 • Bandwidth on links
 • Compute and storage
 • Service functions
Network Slicing in More Detail

- Provide connectivity and function to serve customers with a wide variety of service needs
 - Low latency, reliability, capacity, and service function specific capabilities
- Requirements for Network Slicing
 - **Resources**: Partition the available network resources and provide specific Service Functions with correct chaining logic
 - **Network & Function Virtualization**: Virtualise physical resources and support recursive virtualisation
 - **Isolation**: Operate concurrent network slices across a common shared underlying infrastructure
 - **Performance**: Behaviour of one slice doesn’t (can’t) cause changes in behaviour of another slice
 - **Security**: Attacks or faults occurring in one slice must not have an impact on other slices. Traffic in a slice must be kept safe
 - **Management**: Each slice can be independently viewed, utilised, and managed as a separate network
- **Control and Orchestration**: Orchestration is the overriding control method for network slicing
 - **End-to-end Orchestration**: End-to-end service delivery requires concatenation of networks
 - **Multi-domain Orchestration**: Services can be managed across multiple administrative domains
Why Standards for Slicing?

• Standards are about ensuring interoperability
 – Protocol standardisation is well-known
 – Data models form an increasing part of standardisation
• Network slicing in the IETF is:
 – Use of existing tools to manage networks
 • Routing protocols can advertise link information
 • Signalling protocols can collect path information
 • BGP-LS can share network abstractions and PCE can compute overlays
 • Management protocols can partition and configure networks
 – Three foundational pieces of work in progress
 • Software Defined Networking
 • Abstraction and Control of Transport Networks (ACTN)
 • Enhanced VPNs (VPN+)
SDN Is Key

• SDN is the buzzword of the decade
• Software control of distributed resources
 • Facilitates network management and enables programmatically efficient network configuration
 • Based on a shared architecture of orchestrators and controllers
 • Provided through software APIs and common data models
SDN with a Control Plane

- A common misunderstanding...
 - “SDN implies node-by-node programming of the network”
- SDN is about centralised view and control
 - How to convert into network state is an open issue
- One option is node-by-node programming
 - Such as OpenFlow from a “controller”
- Or we can choose a hybrid approach
 - Central control leveraging an active control plane
 - Keeps autonomy and smarts in the network
 - Adds central, programmable control
 - Allows migration to SDN
 - Supports existing deployment models
- Key component is the TED
YANG Models Are Everywhere

- Data models are an essential tool for SDN
- A model describes a system
 - Allows it to be modelled, observed, and controlled
- YANG is today’s modelling language of choice
 - Replaced MIBs in the IETF
 - Used widely in Open Source
- Hundreds of YANG models have been written
 - Sometimes multiple models for the same thing
- Gradual increase in standardization
 - Enables interworking of components from different vendors and Open Source projects
Why Build a Standard Topology Data Model?

• Data models let us represent information in a well-known way
• Useful for moving it between implementations
 – Export from the network
 • From a single network node talking about its local resources
 • From a network node that collects and aggregates it from the network
 – Share between servers
 • Exchange between PCEs that synchronize state
 – Store, test, and experiment
 • Archive the network at a point in time
 • Conduct offline tests and experiments on stored topologies
 • Debug networks and software
 • Share topologies between researchers or with suppliers
Abstraction and Control of TE Networks (ACTN)

• Abstraction is a way of representing connectivity across a TE network
• This allows a server network to present connectivity options to a client
• ACTN is an architecture for requesting and managing abstractions
• A customer (a client) requests connectivity from an operator
 – Delivered as a VN or a TE topology
• ACTN components map the customer requests to network resources
 – Orchestration can select and instruct networks
 – Controllers can program the network devices
 – TE links (tunnels), abstract nodes, and virtual networks are constructed
 – Services are mapped to the TE resources
Base ACTN Architecture

- Three components
 - Customer Network Controller
 - Formulates requests for clients/customers
 - Multi-Domain Service Coordinator
 - Maps service requests to one or more underlying network
 - Provisioning Network Controller
 - Classic SDN controller
 - With or without control plane

- Three interfaces
 - CNC-MDSC Interface (CMI)
 - MDSC-PNC Interface (MPI)
 - Southbound Interface (SBI)

- Note separation of Customer and Network Provider
- Note recursive nature for carrier’s-carrier
SDN architecture can be mapped to ACTN

Key features are:
- Service orchestration
- Network orchestration
- Domain control

MDSC function can be split between orchestrators

Additional functions may be provided alongside

YANG models serve as the interfaces
- Categorized per RFC 8309
• Virtual Networks (VNs) are slices of the Operator’s Network
• They are “private” slices of the nodes and links
• Help to guarantee specific service types
ACTN Progress in the IETF

- Demonstrates the time-line for developing significant pieces of work
Enhanced VPN Why?

• New applications
 – Particularly applications associated with 5G services
 – “Enhanced overlay services”

• New requirements
 – Isolation from other services
 • Changes in network load or events in other services have no effect on the throughput or latency of this service
 • Drives some form of “partitioning” of the network – Network Slicing
 – Performance guarantees
 • Bandwidth, latency limits, jitter bounds
 – Some level of client control of underlay resources

• Existing technologies
 – VPNs have served the industry well
 • Provides groups of users with logically isolated access to a common network
 – Re-using existing tools, techniques, and experience is very effective
 – Look for an approach based on existing VPN technologies
 • Add features that specific services require over and above traditional VPNs – Enhanced VPN (VPN+)
Architecture of Enhanced VPN

Service Requests

Network Controller

Service Interface/models

Centralized control & management

Customized Virtual Networks (overlay & underlay integration)

Enhanced data plane (resource reservation, scheduling)
Scope of VPN+ Work

• Enhanced data plane
 – Different levels of isolation (from soft isolation to hard isolation)
 – Determinism of packet loss and delay
 – Identification of network slice and the associated network resources

• Control protocols
 – Both centralized and distributed
 – Information distribution, collection and computation to build the required virtual networks
 – Scalability considerations: the amount of state introduced

• Management plane
 – Life-cycle management: planning, creation, modification and deletion

• OAM, protection, inter-domain/inter-layer considerations
Candidate Technologies for VPN+

| Layer 2 Underlay Data Plane | • Flexible Ethernet (FlexE)
| | • Dedicated queues
| | • Time Sensitive Networking (TSN)
| | • … |
| Layer 3 Underlay Data Plane | • MPLS-TE
| | • SR-MPLS/SRv6
| | • Detnet
| | • … |
| Control Plane | • Distributed: RSVP-TE, IGP, BGP…
| | • Centralized: PCEP, BGP-LS… |
| Management Plane | • ACTN architecture and data models
| | • Service models: L3SM, L2SM, etc. |
Enhanced Data Plane for VPN+

• The foundation of service performance assurance
• Many new work in progress to solve the requirement of low/bounded latency, jitter and packet loss, scalability, etc.
• Need to figure out which and how to integrate into VPN+ architecture
• Further discussion about soft and hard isolation
VPN+ Challenges

• Existing VPN sites are connected by RSVP-TE tunnels
 – So what’s new? Why not just do that?

• Scaling is a challenge
 – VPNs are typically aggregated over tunnels
 • Resources are shared and only concerns are capacity and routing
 – But network slices need to be isolated at every hop
 • How many slices will there be?

• Alternatives exist with new technologies
 – A combination of central planning and Segment Routing
 • Central planning is able to determine optimal paths
 • Central planning can keep track of bandwidth usage
 • SR can steer packets onto appropriate paths without (much) state in the network
 • But network nodes still need to be programmed with information about slices
VPN+ Work In Progress at the IETF

- **draft-ietf-teas-enhanced-vpn**
 - A Framework for Enhanced Virtual Private Networks (VPN+) Service
 - Overview of functions and requirements for VPN+

- **draft-dong-spring-sr-for-enhanced-vpn**
 - Segment Routing for Enhanced VPN Service
 - Overview of how to use SR to achieve VPN+

- **draft-dong-teas-enhanced-vpn-control-plane**
 - Control Plane Considerations for Enhanced VPN
 - Control plane requirements, functions, and considerations for VPN+

- **draft-dong-lsr-sr-enhanced-vpn**
 - IGP Extensions for Segment Routing based Enhanced VPN
 - Floods Multi-Topology or SR Flex-Algorithm information
 - Scaling concern depends on number of enhanced VPNs
 - Packets are tagged

- **draft-drake-bess-enhanced-vpn**
 - BGP-LS Filters: A Framework for Network Slicing and Enhanced VPNs
 - Targeted programming (rather than flooding)
 - Better scaling, but a second protocol
 - Packets use DSCP or SR

- **draft-zhuang-bess-enhanced-vpn-auto-discovery**
 - BGP Extensions for Enhanced VPN Auto Discovery
 - Builds on L3VPN auto-discovery
Resources

- Most relevant working groups
 - TEAS
 - PCE
 - BESS
- VPN
 - RFC 4364 : BGP/MPLS IP Virtual Private Networks (VPNs)
- PCE
 - RFC 4655 : A Path Computation Element (PCE)-Based Architecture
- ABNO
 - RFC 7491 : A PCE-Based Architecture for Application-Based Network Operations
- BGP-LS
 - RFC 7752 : North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP
- Virtual Networking
 - RFC 7926 : Problem Statement and Architecture for Information Exchange between Interconnected Traffic-Engineered Networks
- SDN
 - RFC 8283 : An Architecture for Use of PCE and the PCE Communication Protocol (PCEP) in a Network with Central Control
- ACTN
 - RFC 8453 : Framework for Abstraction and Control of TE Networks (ACTN)
- VPN+
 - draft-ietf-teas-enhanced-vpn : A Framework for Enhanced Virtual Private Networks (VPN+) Service
Questions and Follow-up
adrian@olddog.co.uk