YANG-Based Service Models for Services over MPLS Networks

Adrian Farrel
Juniper Networks
Email: adrian@olddog.co.uk

www.isocore.com/2015
Agenda

- What is a Service Model?
- Why should we standardize Service Models?
- The Layer Three VPN Service Model (L3SM)
- Service Models in the SDN architecture
- What other Service Models could we develop?
- How will we measure success?
The Interface to the Operator

• A Service Model is part of the interface between a customer and the operator
 • That makes it one element of a business interface
 • Other aspects of the business interface are not in scope
 • Pricing
 • Billing
 • SLA
• Try to describe the services in a way that is common to multiple operators
 • Gives the customer a common point of reference
What is a Service?

• A collection of network functions provided by an operator to their customer

• Connectivity services
 • Internet connectivity
 • Virtual private wire
 • VPN

• Basic units of purchasable function
 • Available from multiple operators
 • Core characteristics the same
 • May be described and sold in different ways to maintain market differential
Benefits of a Common Approach

• A Service Model is a description of a service
 • A data model that can be represented in code
• Each operator could use their own data model
 • Would find a large overlap between models
• Try to standardise the common portions
 • Each operator uses the common model
 • Adds extensions for their own representation in the market
• Standard service model provides
 • Common base for customers
 • Opportunity for automation of service delivery
Using YANG for Service Models

- YANG is the data modelling language du jour
- There have been many modelling languages and there will probably be many more
- YANG is convenient for human and machine
- Not particularly good on the wire (it’s XML)
 - Easily mapped to other encodings such as JSON
- The main benefit is that it is widely understood
Modularity and Extensibility

- Two important features of data model design
- Modular
 - Possible to pull out components of the model
 - Leave them out completely
 - Re-use them in other models
- Extensible
 - Possible to extend (augment) the model
 - Allows new features to be added
 - Lets operator build on standard model
 - Add their own features
 - Achieve market differential
Layer Three VPN Service Model as an Example

• First attempt at a Service Model in the IETF
 • Unsure that a common description can be agreed
 • Pick a “simple” and “popular” service – L3VPN
• Built a team of network operators (Orange, BT, Verizon, AT&T) and let them get on with it
• Constrained discussion to PE-based L3VPN
• Basic blocks
 • Service identification (service name, service id, customer name)
 • VPN sites (many parameter!)
 • VPN topology (any-to-any, hub-spoke, hub-spoke-disjoint…)
 • Service provided (cloud, multicast…)
• Somewhat to our surprise, these operators have been able to agree
What Can I See From Where I’m Standing?

- Not a lot!
 - Customers can’t see under the hood of the network
 - Service models are not configuration models
Automation of Service Delivery

• Delivery of services can be a major hassle for operator
• Now a service can be expressed in code
 • Perhaps we can automate service delivery
• This brings us into the world of SDN
• Service orchestration
 • Take Service Model as input
 • Output network and device configuration models
• See this in *many* SDN architectures…
Service Models in RFC 4176

- Framework for Layer 3 Virtual Private Networks (L3VPN) Operations and Management

Service	+----------------+ :			
Management		Service	<-----------------------:	Customer
Layer		Manager :	Agent	
+----------------+ :				
Network		+----------------+ :		
Management			Provider :	
Layer			Network	Customer
		<-------	Manager	Interface
	+----------------+ :			
Network Element		:		
Management		+-------+ :		
Layer			CE	
		PE		device
			of	
		<--:--	VPN A	
	+-------+ :			

-->:<---------------------------------
Service Models in ABNO

• RFC 7491
 • A PCE-Based Architecture for Application-Based Network Operations
Service Models in the MEF

REFERENCE ARCHITECTURE

Customer Domain
- CANTATA (CUS:BUS)
- ALLEGRO (CUS:SOF)
 - Customer Application Coordinator

SP Domain
- Business Applications
 - LEGATO (BUS:SOF)
- Service Orchestration Functionality
 - PRESTO (SOF:ICM)
 - ADAGIO (ICM:ECM)
- Element Control and Management

Partner Domain
- Business Applications
 - SONATA (BUS:BUS)
- Service Orchestration Functionality
 - INTERLUDE (SOF:SOF)
 - PRESTO (SOF:ICM)
- Infrastructure Control and Management
 - ADAGIO (ICM:ECM)
- Element Control and Management

Network Infrastructure
How the L3SM Fits In

• draft-ietf-l3sm-l3vpn-service-model
 • YANG Data Model for L3VPN service delivery
Another View of the Architecture

- draft-wang-l3sm-service-automation-architecture
What Other Service Models Could We Work On?

• L2VPN is a popular candidate
 • But is it too complex to make common?
 • How about EVPN?
• Maybe some higher level commonality
 • A common VPN service model?
 • A data model for all services?
• Connectivity as a service
 • Maybe this is too simple?

• The big question: Why bother?
Other Related Work

• Following the principle of modularity
• IETF has work efforts on…
 • Policy
 • A key component of service description
 • Also relevant to configuration models
 • Is it possible to make a common description of policy?
 • A set of tools that could be used in other models
 • SUPA working group just formed
 • Security
 • Many different security functions in the network
 • These need to be configured and selected as services
 • I2NSF working group just formed
What Would Success Look Like?

• Can operators agree on a common subset of features?
 • Is this subset large enough to be useful?
• Is the resulting model extensible for operator use?
 • Can operators represent their different services?
• Can a Service Orchestrator be built to map to configuration models?
 • Might uncover some holes in the configuration models

• Prototypes have been built using early L3SM
 • Indicates that success is possible
Questions

adrian@olddog.co.uk