Service Function Chaining (SFC) An Overview and IETF Work

Adrian Farrel : Old Dog Consulting <adrian@olddog.co.uk>

India Internet Engineering Society (IIESoc)
Connections: A pre-IETF India Forum, October 31st - November 1st, 2018

Menu

- What is Service Function Chaining (SFC)?
 - How is it done today?
- What work is the IETF doing?
 - Terminology and Architecture
- The Network Service Header (NSH)
 - An encapsulation for SFC
- System Components, Processing Rules, Clever Stuff
 - Meta Data
 - OAM
- Other approached
 - L3VPN, MPLS, Segment Routing
- Control Plane requirements and solutions
- References

Why me?

- Participating in IETF SFC standardisation via:
 - SFC working group
 - BESS working group
- Served as IETF Routing Area Director
 - For 6 years up to March 2015
 - Chartered the IETF's SFC activity
- Enthusiastic supporter of increased IETF participation from India
- I write books of fairy stories so I am uniquely qualified

Classic Service Function Delivery

- "Bump in the wire"
 - Historically implemented as a dedicated device
 - Sits as an "invisible" feature on a link

Limitations of Classic Service Functions

- Many limitations
 - Large volume of under-used devices
 - Multiple devices to provide a set of functions
 - Upgrades and new functions are hard
 - At best need software upgrade at every site
 - May need physical visits
 - Management is highly distributed
 - Remote (or sometimes local!) login to every device
 - High chance of mismanagement

Off-Path Service Functions

- Service function is located somewhere remote
- Packets are "seamlessly" extracted at the gateway and tunnelled to the service function
- A "remotely provided locally attached" approach
- Obviously, not a perfect technique for load reduction or security

Introducing the Data Centre

- Data centres allow service functions to be virtualised
 - Placed off-path
 - Means traffic has to be routed (tunnelled) to them
 - Achieves cost-effective scaling
 - One service function instance can serve many traffic flows
 - Achieves flexible scaling and load balancing
 - New service function instances can be spun up easily
 - Highly agile
 - New functions and new versions of functions can be rolled out
 - Simple management
 - Service functions are "local" to the management application and consistent
 - Build sophisticated sequences (chains) of service functions

So What are the Real Use Cases?

- Most of the actual use cases on the table are quite simple
 - Firewall
 - Just divert to the firewall then return to path
 - Load balancers
 - Divert macro flows to a function that distributes sub-flows across links or ACs
 - TCP Proxy
 - Add function in the TCP payload
 - Terminate the session, do function, start new session
 - End-point Selection
 - Pick a network exit point (such as for dual-homed CEs)
 - See also load balancers
- None of these is a complex or a long chain of functions
 - That may mean that everything that follows is over-engineering!
- One more complex example *might* exist for mobile connectivity
 - Derive caller ID, apply billing (per call, per byte), call-based access controls, parental controls, firewall
 - But isn't that already done in the wireless realm?

IETF's SFC Work

- SFC Working Group
 - https://datatracker.ietf.org/wg/sfc/about/
 - Formed September 2013
 - I was the chartering AD
 - Chairs
 - Jim Guichard (james.n.guichard@huawei.com)
 - Joel Halpern (<u>jmh@joelhalpern.com</u> -- Ericsson)
 - Five RFCs so far
 - RFC 7498 Problem Statement
 - RFC 7665 Architecture
 - RFC 8300 Network Service Header (NSH) encapsulation
 - RFC 8393 and RFC 8459 Minor extensions to the NSH
 - Most interesting work in progress
 - Service Function Chaining Use Cases in Mobile Networks
 - https://datatracker.ietf.org/doc/draft-ietf-sfc-use-case-mobility/

IETF SFC Terminology

- Service Function (SF)
 - A function that is responsible for specific treatment of received packets
 - Can be realized as a virtual element or be embedded in a physical network element
 - Can act at various layers of a protocol stack
 - E.g., firewalls, WAN acceleration, application acceleration, DPI, server load balancers, NAT44,
 NAT64, HTTP header enrichment, TCP optimizers
- Service Function Chain (SFC)
 - An ordered (or partially ordered) set of abstract service functions
 - Applied to a set of packets, frames, or flows
- Service Function Path (SFP)
 - A specific instance of an SFC
 - Allows control of specific instances of SFs
 - Applied to a subset of packets/frames (usually whole sub-flows)
- Service Function Forwarder (SFF)
 - A device that forwards traffic along an SFP for processing by the next SF

The IETF's SFC Architecture

- Packets arrive at a Classifier
 - Matched against flow definition criteria
 - Placed onto a specific SFP
- Packets are tunnelled between SFFs
 - Tunnels depend on local technology
 - SFFs and tunnels form an overlay network
- SFFs deliver packets to locally instantiated SFs
 - May be many instances for load balancing

Requirements for Packet Encapsulation

- SFF has to know
 - To which local SFs to deliver a packet (and in what order)
 - Any criteria to help choose between multiple instances of SFs
- SFF has to know out of which transport tunnel to send the packet (toward the next SFF)
- Need loop prevention
- Do not want to perform classification at each SFF
 - It is expensive and can delay packets

The Network Service Header (NSH)

- SFC encapsulation should be layer agnostics
 - Should not know/care what the payload is
 - Should not know/care what the transport is
- Light-weight but fully functional
 - Address the requirements on previous slide
 - Enable complex SFPs
 - Simplify SFF and SF implementation

NHS Encoding (RFC 8300)

Classifier Processing Rules

- Classifier
 - Receives packets
 - Determines to which SFP a packet belongs
 - Applies an NSH
 - Sets SPI to indicate the SFP
 - Sets SI to indicate first SF on the path
 - Sets TTL "appropriately"
 - Sets Next Protocol to identify payload
 - Selects tunnel towards first SFF
 - Applies transport encapsulation
 - Sends packets

SFF Processing Rules

- SFF
 - Receives packets on a transport tunnel
 - Does the tunnel identify the SFP?
 - No, that would not scale: many SFPs may traverse a pair of SFFs
 - Strip the transport header
 - Do NSH TTL processing
 - Decrement and discard if goes to zero
 - Use SPI/SI to index the SFI to process the packet
 - Packet is for local processing
 - Pass packet (with NSH) to SF [see next slide]
 - Receive packet back from SF
 - Loop -
 - Or
 - Select transport tunnel towards next SFF
 - Impose transport header
 - Send the packet

SF Processing Rules

- SF
 - Receives packets from the SFF
 - May check the NSH
 - Steps over the NSH and acts on the packets
 - Result may be:
 - Packet OK to continue
 - Packet modified
 - Packet quarantined or sent somewhere else for processing
 - Alarm raised
 - Packet discarded
 - Etc.
 - NSH updated
 - SI decremented to indicate next SF to use on the SFP
 - Packets returned to (same) SFF

SFC Proxy

- Suppose you have a legacy SF
 - It uses port attachment
 - It expects native packets
 - It cannot recognise an NSH
- The SFC Proxy strips the NSH and keeps per-port state
 - Forwards the native packets to the SF
- SFC Proxy receives packets back from the SF
 - Re-imposes NSH
 - Decrements SI

Packet with Transport Header and NSH

Packet with NSH

Raw packet

Meta Data

- What is Meta Data?
 - Information about the packet that is carried along with the packet
 - May be derived from the packet (e.g., hash or DPI)
 - May be generated by an SF (e.g., caller ID or content type)
 - Used by SFs to help execute their functions on the packet
 - Generally, Meta Data could be regenerated by an SF, but would be wasteful of processing and configuration
- Where do you draw the line?
 - A Classifier works on a packet to select the SFP
 - That work is carried in the NSH as the SPI
 - The SPI is not considered to be Meta Data

Meta Data Use Cases

- Use cases for SFC Meta Data in IP networking are a little unknown
 - Is this a hammer looking for a nail?
 - For broad classifications maybe just use a different SFP (hence SFI) since that is cheap
 - Is just trying to solve a layer 5 problem at layer 3?
 - Do you really need this information on every packet?
 - Per packet Meta Data (such as the SPI)
 - Per flow Meta Data (applies to all packets with the same 5-tuple)
 - Per SFP Meta Data (applies to all packets on the same SFP)
- But for a discussion of possible Meta Data requirements see:
 - https://datatracker.ietf.org/doc/draft-ietf-sfc-use-case-mobility/

Meta Data Encoding

- NSH uses an Extension Header to carry per-packet Meta Data
- The MD Type field in the Base Header indicates
 - Type x1
 - A fixed-length 16-byte Extension Header is present
 - Format and content is "context-specific"
 - Means SF already knows what to expect to see
 - SFP must be built only from SFs using the same format
 - Type x2
 - Variable length Extension Header
 - Contains its own class, type, and length fields
 - Bandwidth and parsing challenges arise!

Reclassification and Other Clever Stuff

- A Classifier may be placed anywhere on an SFP
 - Allows choices to be made
 - Forks
 - Loops
 - Jump-over
 - Choice can be based on packet header/content and metadata
- In practice, Classifier may be co-located with an SF, SFF, or SFC Proxy
- For example
 - Simple SFC sends all packets to a Firewall
 - Good packets are forwarded : Bad packets are dropped
 - Suspect packets are moved onto a different SFC to be analysed and logged
 - Packets that are good after all, are forwarded
 - Packets that are bad and newly bad are sent onto a new SFC for security measures to be triggered

OAM?

- We want to know
 - Is an SFP up (end-to-end)?
 - Which SFs are on the SFP and in what order?
 - Did a packet execute the desired SFs and in what order?
 - Which specific SFIs did a packet transit and in what order?
- What can we do with injected packets?
 - Does an SF have to be OAM-aware?
 - They don't tell us how the real packets are processed
- What about "inband OAM" (iOAM)
 - We can use Meta Data to record the path of a packet
 - Ugly amount of data
 - Probably needs hop-by-hop digital signatures
 - Maybe the SFF can do the work (saving the SF from the pain)
- IETF work (so far) is inconclusive
 - It is sad when OAM is not built into a new technology from day one

Drawbacks to NSH

- There are some concerns about the NSH
 - SFFs should be able to process packets at line speed
 - Do they need new silicon for a new encapsulation?
 - Legacy SFs need an SFC Proxy to strip the encapsulation
 - An SFC Proxy is not so simple unless it is one per SFP
 - And, anyway, who will make/sell proxies?
 - In-packet Meta Data makes hardware processing hard
 - Also may make MTU prediction difficult
 - Lack of defined OAM
 - Early hardware will ship without OAM support
 - Rule to decrement SI at the SF is "clumsy"
 - Would like to support gaps in the SI sequence so that SFPs can be modified in place
 - Can be handled by programming Classifiers within SFs

Other Approaches

- Of course...
 When a problem space is identified, there are always multiple solutions proposed
 - This is a good thing!
 - Industry can test and experiment
 - "Let the market decide"
- A quick visit to three possible approaches
 - L3VPN
 - MPLS
 - Segment Routing

SFC With L3VPN

- Supports multiple instances
 - Indexed by VPN label
 - Outbound traffic
 - Routed to remote PE
 - Based on VRF populated by BGP
 - Inbound traffic
 - Port-based attachment to CE

- Supports multiple SFPs
 - Indexed by VPN label (i.e., SPI)
- Outbound traffic
 - Source PE "classifies" traffic
 - Routed to next PE (SFF)
 - Based on SFP populated by BGP
- Inbound traffic
 - Port-based attachment to SF

SFC With an MPLS Data Plane

- There are lots of MPLS-capable routers
 - Perhaps they could act as SFFs without too much effort
 - Use a stack of two labels in place of the NSH (32 bits both ways)
 - Other fields "not needed"
 - Packets progress by label swapping

MPLS SFC Processing

- Tunnels between SFFs "as normal"
 - Of course, we are interested in MPLS as the transport
- SPI and SI used "as normal" for NSH
 - Some limitation as SPI is constrained here to 20 bits
- MPLS-SFC processing...
 - Labels are looked up and acted on by SFF to determine next hop
 - Maybe forward to SFI or SFC proxy
 - Maybe forward to next SFF
 - In some cases action can be achieved simply through SPI
 - In other cases need the two label context
 - SI is updated before further forwarding (it's a swap)
 - SPI and SI set during classification
 - Potentially also during re-classification

What About Metadata?

- MPLS encapsulation not well suited for carrying "arbitrary" metadata
- We define an Extended Special Purpose Label

15 = Extended Special Purpose Label Follows

Metadata Label Indicator (MLI)

Metadata Label

- This three-label sequence can be included at the bottom of the label stack
- Metadata label is an index into a store of metadata
 - Must also not use 0..15
- Store may be populated though management plane, control plane, or in-band (next slide)
 - This approach is not good for "per-packet metadata" (e.g., hashes)
 - Works fine for per-SFP or per-flow metadata

In-Band Meta Data Distribution

Tunnel Labels

SFC Context Label

Service Function Label

15 = Extended Special Purpose Label Follows

Metadata Present Indicator (MPI)

Metadata Label

Length Type Metadata

- Send packets along an SFP without carrying payload (but still carrying metadata)
- Use an Extended Special Purpose Label
 - Hence, a three label sequence
- Metadata Label is the index for use in data packets
- Placed at the bottom of the label stack
- Rest of stack exactly as for SFP
- Meta Data carried as payload
 - Formatted as TLV
 - Type field defined by SFC WG for NSH
 - Meta Data as defined by SFC WG
- Nodes on the SFP can store the Meta Data

Segment Routing for SFC

- Segment routing is a source-controlled, per-packet, traffic steering technique
 - A stack of hops is imposed on the packet and used in the network to control the route
 - Moves state from the network to the packet
 - No need for a signalling plane (still need routing/discovery)
 - Works for MPLS and IPv6
- Potential for application to SFC
 - The hops are the SFF/SFI pairs
 - Impose MPLS label pairs, or IPv6 SIDs
 - No need for SFP state in the network
 - Easy to vary the SFIs "on the fly"

Control and Management Requirements

- How do I configure SFIs?
- Where are the SFIs?
 - How do I reach them? (Which SFF?)
 - What are their capabilities?
- Where are the SFFs?
 - How are they connected? (tunnels, addresses)
- How do I compute and "create" SFPs?
- What are the SFPs?
 - How does an SFF know which SFPs it serves?
 - How does an SFF know to which SFI to deliver packets?
 - How does an SFF know to which SFF to forward packets?
- How do I determine what traffic to put on an SFP?
- How do I tell the Classifier how to classify traffic to SFPs?

Centralised or Distributed Control?

- A lot of this feels like a TE problem
 - Overlay network
 - Path computation
 - Traffic steering
- Achievable with a combination of central and distributed control
 - Planning
 - Configuration/instantiation
 - Discovery
 - Routing
- A role for something like a PCE?
- As demonstrated by L3VPN approach, routing is edge-to-edge
 - Makes BGP a good idea

A BGP Control Plane

- Data plane agnostic (NSH, MPLS, ...)
- Discovery
 - SFF announces locally attached SFIs
 - Route Target
 - Identifies the overlay network
 - Other nodes only import when the RT matched
 - Route Distinguisher (SFIR-RD)
 - Identifies this SFI advertisement
 - SF Type (SFT)
 - From the FCFS IANA registry
 - Controller(s) can know about available resources and locations
 - SFFs can know how to reach next SF on an SFP
- SFP Advertisement
 - Controller (or head end) announces each SFP
 - Route Target
 - So only participating nodes need to import the advertisement
 - Route Distinguisher (SFPR-RD)
 - Identifies the SFP advertisement
 - Service Path Identifier (SPI)
 - Uniquely identifies the SFP
 - Used in the forwarding plane to identify this SFP
 - Series of hops in the path each encoded as a Hop TLV (the specific SIs)
- BESS working group

Resources

- SFC Working Group
 - https://datatracker.ietf.org/wg/sfc
 - SFC Architecture
 - https://www.rfc-editor.org/rfc/rfc7665.txt
 - Network Service Header (NSH)
 - https://www.rfc-editor.org/rfc/rfc8300.txt
- BGP Enabled ServiceS (BESS) Working Group
 - https://datatracker.ietf.org/wg/bess
 - Service Function Chaining using Virtual Networks with BGP VPNs
 - https://www.ietf.org/id/draft-ietf-bess-service-chaining
 - BGP Control Plane for NSH SFC
 - https://www.ietf.org/id/draft-ietf-bess-nsh-bgp-control-plane
- MPLS Working Group
 - https://datatracker.ietf.org/wg/mpls
 - An MPLS-Based Forwarding Plane for Service Function Chaining
 - https://www.ietf.org/id/draft-ietf-mpls-sfc
- Source Packet Routing in Networking (SPRING) Working Group
 - https://datatracker.ietf.org/wg/spring
 - Service Programming with Segment Routing
 - https://www.ietf.org/id/draft-xuclad-spring-sr-service-programming

Questions and Follow-up adrian@olddog.co.uk