Data Centre Routing

Adrian Farrel Shraddha Hegde

Connections-2018

Topics

- Background
 - History and problems
 - Common DC topologies
 - The IP fabric
 - Underlay versus Overlay
 - Problems in DC topologies
- Solution space
 - E-BGP/I-BGP
 - RIFT
 - Flooding Reduction in IGPs
 - LSVR
 - EVPN Overlay

Data Centre History an Problems

- Originally built as IEEE 802.1 Ethernet bridged networks
 - A set of Ethernet switches connected in a dynamically maintained tree topology
 - Controlled via spanning tree
- Roughly ten years ago we reached the architectural limits of such networks
 - DCs continued to grow in size
 - Addressing, convergence, and performance became issues
- Specifically
 - Scaling
 - Ethernet VLAN (IEEE 802.1q) uses a 12-bit VLAN tag, supporting 4096 tenants
 - Spanning tree means each Ethernet switch maintains forwarding state for all end-systems
 - Convergence
 - Spanning tree can take tens of seconds to converge
 - Load balancing
 - Spanning tree develops only one path leading to under- and over-used links
 - End-system mobility
 - New location has to be learned causing interruption in traffic delivery and churn in the bridged network

Data Centre Objectives Dictate Topologies

- Very large clusters of severs each hosting many virtual machines
- High volume of traffic in and out of the DC
- High volumes of intra-DC traffic
- Probably grow-out through bulk addition of servers
- Leads to some common approaches to DC topologies
 - Highly connected
 - No server more than a few hops from a DC gateway
 - No server more than a few hops from each other server
 - Redundant paths
 - No network failure should isolate any part of the DC
 - Modular architecture
 - Allows whole clusters to be added at once without needing significant rewiring

Common DC Topologies

- Clos networks
 - Invented in 1938 by Edson Erwin
 - Made useful in 1952 by Charles Clos
 - Valuable for wiring together telephone switches
- Clos Topology in the DC
 - 3-stage network
 - Each server is 3-hops away from the other
 - Constant number of hops
 - 5-stage network (also known as 3-level)
 - Super spine
 - Connectivity nodes clustered into PoDs

The IP Fabric

- Set of IP forwarding nodes
 - Utilizing commodity silicon
 - Typically (but not always) lacking support for MPLS
 - Arranged in a Clos network
 - Lots of ECMP
- ToRs are given a prefix
 - In IPv4 this is typically a /24
 - Summarizes the ports (tunnel endpoints) assigned to it
 - Summarized when advertised outside the IP fabric
- IP fabric is largely static
 - Routing is to tunnel endpoints at ToR
 - These tunnel endpoints do not move within the IP fabric
 - Means IP fabric models a switch fabric where ports also do not move
 - Routing advertisements reduce to failure/repair
 - Link/nodes within the fabric
 - ToR failure means withdraw /24

Configuring the IP Fabric

- Automatic provisioning is extremely important
 - Networks are very large
 - Workload and scope for error are very high with manual provisioning
- Starts with the IP fabric topology and a naming space for the nodes within it
- Usually based on a "playbook"
 - A template for configuration of an individual node
 - Different playbook for each control plane protocol
 - Contains, for example:
 - Loopback address, IP addresses for each of the node's P2P links, an AS number, protocol configuration parameters
 - IP addresses are assigned starting with a base IP address and then moving through the IP fabric in a systematic way
- Nodes retrieve their individual copies of the playbook from the automatic provisioning system
 - DHCP (option 82), or other standard protocols
 - Routed via the nodes above it in the IP fabric
 - Implies and dependent sequence on start-up
 - Out-of-band management system LAN considered impractical
 - Network is too large
- Node initiate links
 - Use LLDP or CDP to verify its provisioned P2P connectivity
 - Bind the P2P IP addresses to each of its P2P links
 - Establish protocol sessions
- Provisioning systems need to handle nodes from multiple vendors

Overlay and Underlay Routing

- Routing in the DC is considered as underlay and overlay
- Underlay routing is within the IP fabric
 - ToR to ToR
 - Gateway to ToR
 - ToR to Gateway
- Overlay routing is across the IP fabric
 - VM to VM
 - VM to external (other DC, Internet, etc.)
 - External to VM

Routing Problems

- L2 Technology
 - Scale issue with vlan-tag
 - Slow convergence of spanning tree protocol
 - Mac learning
 - End-point mobility
 - ECMP not supported
- IGP
 - Flooding in regular topology
- BGP
 - Configuration heavy
 - Slow convergence

BGP inside the Data Center

- Simple protocol state machines
- Reliable as it uses TCP underlay
- Minimum configuration
- Light weight policy for minimal traffic engineering
- Single hop E-BGP session
- Private ASNs from 64512-65534
- Unique ASN to Tire2 and Tier 3 devices

RIFT

- New Routing Protocol for Datacenters
- Distance vector down, link state up
- Automatic link discovery, automatic tree formation
- Minimal amount of route information on leaf/TORs
- High degree of ECMP natively (BGP needs additional knobs)
- Traffic Engineering on all links
- Fastest Convergence on failures
- Automatic disaggregation prevents blackholing

Flooding Reduction in IGPs

- Idea of flooding reduction existed in IGPs
- There are multiple proposals in IETF
- draft-li-dynamic-flooding-isis-00
 - Choose a flooding topology
 - Choose a leader in the topology
 - Use DR/DBR kind of election/Tie breaker
 - Leader advertises flooding topology
 - Flooding topology calculation is a local implementation
- draft-cc-isis-flooding-reduction
- draft-xu-isis-flooding-reduction-in-msdc-01

LSVR

- Addresses the slow convergence issue in BGP based DCs
- Uses BGP-LS Like NLRI to advertise Node/Link Prefix Info
- Computes SPF in BGP using topology info
- BGP best path computation replaced with SPF computation
- New SAFI named LSVR SAFI

EVPN as the Overlay Routing Protocol

- Mechanism to achieve end-point connectivity in DCs
- Same or different bridge domain
- Uses MP-BGP to distribute MAC addresses
- Uses concepts from traditional VPNs to separate customers/CEs
- Highly scalable for end-point connectivity
- In-built multi-homing and mobility

THANKS