A BGP-Based Control Plane for Service Function Chaining

draft-mackie-bess-nsh-bgp-control-plane-01

Adrian Farrel (adrian@olddog.co.uk)

- J. Drake (jdrake@juniper.net)
- E. Rosen (erosen@juniper.net)
 - J. Uttaro (ju1738@att.com)
- L. Jalil (luay.jalil@verizon.com)

Objectives

- Use BGP to
 - Discover SFFs
 - Learn what SFs are supported by each SFF
 - Distribute information about complete SFPs
- Re-use BGP VPN methodology and lessons learned
- Fully support SFC architecture and NSH protocol
 - RFC 7665
 - draft-ietf-sfc-nsh
- Allow flexible, high-function implementations and deployments
- Support multiple SFC overlay networks on a common underlay

How it Works

- BGP used to advertise using a new AFI/SAFI with two route types
 - Service Function Forwarder and Service Function discovery
 - Service Function Path composition
- SFC Overlay Networks
 - The SFFs are connected together by tunnels crossing underlay networks
 - The SFFs form an overlay network
 - We allow multiple overlay networks at once and distinguish them using Route Targets
- Service Function Types
 - New registry of type indicators for service functions
- SFF/SF discovery
 - Each SFF advertises a Service Function Instance Route (SFIR) for each SFI it supports
- SFPR for SFP distribution
 - The controller advertises the whole SFP so that nodes on the path know about it

Service Function Instance Route (SFIR)

- Each SFF advertises for each SFI to which it provides access
 - Allows other SFFs to know how to route to the advertised SFI
 - And the information to build tunnels across the underlay
 - Allows controller to see all available SFIs
- Advertisement contains
 - Route Target
 - Identifies the overlay network
 - Other nodes only import when the RT matched
 - Route Distinguisher (SFIR-RD)
 - Identifies the SFI advertisement
 - SF Type (SFT)
 - From the FCFS IANA registry
- The combination SFIR-RD/SFT uniquely identifies a specific SFI

Service Function Path Route (SFPR)

- Service Function Paths are constructed and advertised by controllers
- An SFP is a sequence of SFIs
- Advertisement contains:
 - Route Target
 - So only participating nodes need to import the advertisement
 - Route Distinguisher (SFPR-RD)
 - Identifies the SFP advertisement
 - Service Path Identifier (SPI)
 - Uniquely identifies the SFP
 - Used in the forwarding plane to identify this SFP
 - Series of hops in the path each encoded as a Hop TLV

The Hop TLV

- One instance of the Hop TLV for each hop in the path
- Each Hop TLV contains
 - Service Index
 - Used in the forwarding plane to identify this hop
 - A Service Function Type
 - The type of SF that must be executed
 - An SFIR-RD
 - The RD of the SFIR that advertised the SFI to be executed
- The uncomplicated case
 - SFPR is just a series of Hop TLVs each with one SFT/SFIR-RD

A Simple Example

Advanced Function

- Offering a choice of next hop
 - A Hop TLV can carry multiple SFI identifiers
 - Allows for load-balancing or other policy choices through re-classification
 - Choice may be between SFIs of same or different types
- Choice may be open
 - A Hop TLV indicates a specific SFT, but leaves choice of SFI open
 - Allows SFF to select "best" next hop considering load and underlay network
- Explicit control of next hop can be achieved using a "special purpose SFT"
 - Standards action range (1-31)
 - One value defined: "Change Sequence"
 - In this case the SFIR-RD is overloaded to contain SPI/SI of next hop
 - May be anywhere on the same SFP ("jumping")
 - May be another SFP ("branching")
- Encapsulation between SFFs
 - The SFIR can include a Tunnel Encapsulation attribute to tell other SFFs how to reach the SFI
- Association of SFPs
 - SFPR can include an Association TLV containing the SFPR-RD and SPI of an associated SFP
 - Allows creation of a bidirectional SFP
 - Opposite directions do not need to be co-routed

Points of Contention

- Is this work for BESS or SFC?
 - In charter at BESS, out of charter at SFC
 - BUT, MUST socialize to SFC
- Support for looping, jumping, branching, spiralling
 - Yes, we support all of them
 - There is a danger inherent in the SFC architecture of infinite loops caused by looping and branching
 - SFC WG needs to think about a solution
- Whose job is it to decrement SI?
 - Out of scope of this document
 - This control plane solution supports anyone decrementing SI
- Does "decrement SI" mean "decrement SI by one"?
 - Out of scope of this document
 - This control plane solution supports any decrement of SI
- When can re-classification happen
 - A re-classifier can be co-resident with SF or SFF, or in between per RFC 7665
 - This document supports any of these options
 - Our work allows the definition of choices in the SFP
 - Whenever a choice is made, this is "re-classification". Also known as "local policy".
- How does this relate to draft-ietf-sfc-control-plane?
 - Compatible with forwarding requirements in that draft