The Role of PCE in an SDN World

Adrian Farrel – Old Dog Consulting
adrian@olddog.co.uk

Daniel King – Lancaster University
d.king@lancaster.ac.uk
What shall we talk about?

- The Path Computation Element (PCE)
 - What it is and where it comes from
 - How it is being used and what are the future plans
- SDN and NFV
 - What do we mean with these terms?
 - Is there a need for path computation?
- Application-Based Network Optimization (ABNO)
 - An “all-embracing” architecture or SDN and NFV
 - Where does PCE fit in ABNO?
 - What further work is needed?
- ABNO-centric implementations and research
The PCE – A short history

• PCE: Path Computation Element - “An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and applying computational constraints.” from RFC 4655

• That means that a PCE is a functional component in an abstract architecture.
 • It’s purpose is to determine paths though a network
 • It operates on a topology map (the Traffic Engineering Database – TED)
 • Nodes and links == connectivity graph
 • Node constraints and link constraints == metrics and capabilities
 • Learned from the routing protocol in the network, or from the inventory database, or direct from the network nodes
 • It can be realised as a component of an existing device (NMS, router, switch) or as a dedicated server (or virtualised service)

• Benefit of identifying PCE as a separate service...
 • Offload CPU-heavy computations
 • Provide advanced and sophisticated algorithms
 • Coordinate computation across multiple paths
 • Operate on an enhance TED

• Primary initial purpose was for Traffic Engineered MPLS LSPs
 • Rapidly picked up for optical transport networks
Deployment Models for PCE

- The Path Computation Client (PCC) may be co-located with the PCE or separate
Deployment models can be seen as theology

• How you choose to use PCE depends on how you like to operate your network

• There is a range of theologies
 – There is one God who sees and controls everything
 – There is a single God who answers prayer, but you have free choice
 – There are many gods each with different responsibilities
 – We all contain an element of God

• PCE can be placed in a number of places
 – In a central provisioning server (NMS)
 – In a dedicated computation server
 – There may be multiple PCEs with different capabilities in different parts of the network
 – The PCE function can be distributed into the routers
The PCE Protocol (PCEP)

- The PCE architecture originates in the IETF
 - The main focus of the IETF is to specify protocols
- PCEP is the request/response protocol for accessing the services of a PCE
 - Session-based carried over TCP
- Like PCE, PCEP had a very narrow purpose
 - Simple path computation request/response for MPLS-TE LSPs
- Initial proposals and early implementations
 - Used RSVP-TE Path messages
 - It is “kind of obvious”: that is exactly what we will signal
 - Just use the TCP session to give context to the usage
 - It really worked
- But was that really extensible?
 - Even in the MPLS-TE context we needed multiple extensions
 - RSVP has a lot of baggage
- Result:
 - A new container protocol and re-use of RSVP objects
The PCE – some more history

• Packet networks have not been a roaring success for PCE
 • Initially, only Cisco implemented
 • It is implemented and deployed
 • Main use cases are
 • Dual-homed IGP areas
 • Centrally controlled TE domains

• There is a huge amount of research and experimentation
 • More than 20 projects funded by the EU have PCE as a core component
 • A number of operators have in depth experimentations

• Commercial and Open Source Implementations
 • Software stacks from Metaswitch and Marben
 • But these are PCEP implementations, not full PCEs
 • Several Open Source implementations exist
 • Hardware vendors
 • Network operators

• The best take-up for PCE so far is in optical networks
Evolution

- PCE evolved very quickly after it was invented
- Advanced PCEP encodings for non-packet environments
- PCEP extensions for coordinated path computations
 - Path protection
 - Network re-optimisation
- Cooperating PCEs for multi-domain applications
- Applicability to sophisticated services such as point-to-multipoint
- Hierarchical PCE for selection of paths across multiple domains
- And evolution continues today
Cooperating PCEs

• The first “interesting” problem for PCE was inter-domain TE
 • “A domain is any collection of network elements within a common sphere of address management or path computation responsibility.” RFC 4655
 • An IGP area or an Autonomous System
 • An optical island

• Nodes in one network cannot see into other networks
 • PCEs must ask each other for advice

1. I want to reach the Egress
2. Thinks… “Route through A looks best”
3. How should I reach the Egress?
4. Thinks… “Route through D would be best”
5. I want to reach the Egress

Ingress

\[X \quad Y \quad \text{Egress} \]

PCE

A
B
C
D

254
345
9
Hierarchical PCE

• How do I select a path across multiple domains?
• Parent PCE (pPCE) has
 • An overview topology showing connectivity between domains
 • Communications with each Child PCE (cPCE)
• Parent can selectively and simultaneously invoke children to assemble an end-to-end path
The Stateful PCE

• The “classic” PCE uses network state stored in the TED
 • This information may be gathered from the network
 • Passive participation in the IGP
 • Export from the network using BGP-LS
 • Or it may be gathered by “other mechanisms” (RFC 4655)
 • Inventory, management systems, configuration export

• There is also transitory per-computation state in the PCE
 • This allows bulk computation or “Please compute a path considering this other LSP”

• A Stateful PCE is aware of other LSPs in the network
 • A PCE could retain knowledge of paths it previously computed
 • Or it may gather information about LSPs as exported from the network
 • BGP-LS
 • PCEP
 • “Yes, I used that path you gave me”
 • “Here are some other LSPs I know about”

• A Stateful PCE is able to do more intelligent path computation
The Active PCE

- An Active PCE is able to advise the network
 - About more optimal paths
 - When congestion is a problem

- As far as the protocol is concerned, it is only a small step
 - The PCC can say “Please worry about these LSPs for me.”
 - Delegation of LSPs from the PCC to the PCE
 - The PCE can say “Here is a path you didn’t ask for.”
 - For delegated LSPs or for new LSPs

- This enriches PCEP
 - From a request/response protocol
 - To become *almost* a configuration / provisioning protocol

- Architecturally it is “interesting”
 - PCEP used to be the language spoken by the computation engine (PCE)
 - Now it is the language spoken by the network management system (NMS) that has a computation component
 - That doesn’t make it wrong. It does make it different

- It also opens up PCEP as an SDN protocol as we will see later
New Networks and PCE

• New IETF effort: SPRING Working Group
 • Source Packet Routed Networking
 • Path through the network is predetermined for each packet
 • Path is encoded in the packet header as a series of hops
 • Some form of path computation is required
 • Could be as simple as SPF
 • May achieve load balancing
 • Might assign flows to different quality paths (delay, jitter, reliability, etc.)

• Service Function Chaining
 • Another new IETF effort: SFC Working Group
 • A Service Function Chain is an ordered list of service functions and servers
 • That means some form of path computation is necessary

• Deterministic wireless networks
 • For example Timeslotted Channel Hopping (TSCH) - IEEE802.15.4e
 • Path planning is an important aspect of operating these networks

• PCE is being investigated as a tool for these new networks
 • What that really means is that PCEP extensions are being proposed
What do we mean by “SDN”?

- **Software**
 - It’s all software!
 - We are looking for automation
 - Tools and applications

- **Driven or Defined**
 - Does it matter?

- **Networks**
 - Management of forwarding decisions
 - Control of end-to-end paths
 - Whole-sale operation of network

- The goals of commercial SDN networks
 - Make our networks better
 - Rapidly provide cool services at lower prices
 - Reduce OPEX and simplify network operations
 - Enable better monitoring and diagnostics
 - Make better use of deployed resources

- Converged services are the future
- Converged infrastructure is the future

- There is a significant element of centralisation
Bringing PCE to the SDN Feast

• PCE is an essential element for planning services in any network

• An Orchestrator cannot orchestrate without determining how traffic will flow through the network
 • And that means that an Orchestrator needs path computation function
 • Whether the PCE is built into the Orchestrator or lives as a separate component is an implementation choice

• A Controller cannot control more than a single node without determining how traffic will flow through a set of nodes
 • And that means that a Controller may need path computation function
 • Whether the PCE is built into the Controller or lives as a separate component is an implementation choice
PCEP as an SDN Protocol

• It is a simple step beyond an Active, Stateful PCE
 • Instead of suggesting LSPs, a PCE can provision LSPs

• Now PCEP can be seen as a full-scale provisioning protocol
 • I can provision anything for which I might have asked for a path
 • End-to-end LSPs
 • A fragment or segment of an LSP
 • The forwarding instructions on a single node

• Now PCE can be integral to the SDN components
 • I can use PCEP as an SDN Controller protocol
 • And/or as the Orchestrator-to-Controller protocol

• This raises the question of “competition” with OpenFlow which we will address later
Can we define “NFV”?

• Operators use a variety of proprietary appliances to provide network functions when delivering services

• Deploying a new network function often requires new hardware components
 • Integrating new equipment into the network takes space, power, and the technical knowledge
 • This problem is compounded by function and technology lifecycles which are becoming shorter as innovation accelerates

• The concept of virtualization is well-known and has been used for many years
 • Operating system virtualization (Virtual Machines)
 • Computational and application resource virtualisation (Cloud Computing)
 • Link and node virtualisation (Virtual Network Topologies)
 • Data Center Virtualisation (Virtual Data Center)

• Network Function Virtualization
 • Virtualize the class of network function
 • Replace specialist hardware with instances of virtual services provided on service nodes in the network
 • Enables high volume services and functions on generic platforms

• Virtualizing network connectivity for services and applications is just another facet of NFV
SDN & PCE as enablers for Network Virtualization

- Consider Transport SDN as an example
 - Integrates Packet, TDM, and Optical Layer into a single converged network
 - Requires centralized control functions including resource computation
 - Uses southbound control interface
Harnessing the Unicorn

• We’ve established that PCE is a wonderful thing
• We know that SDN and NFV offer a bright future for networking
• How do we bring PCE fully into the picture and make it work for us?
Building a Functional Architecture

• The purpose of a functional architecture is to decompose a problem space
 • Separate distinct and discrete functions into separate components
 • Identify the functional interactions between components

• An architecture is not a blue-print for implementation!
 • Components are abstract functional units
 • They can be realized as separate software blobs on different processors
 • Or they can all be rolled into one piece of spaghetti code
 • And they can be replicated and distributed, or centralized

• A protocol provides a realization of the interaction between two functional components
 • You only need to use it when the components are separated

• There have been many useful attempts to document architectures for SDN and NFV

• Our work has tried to present a wider picture
 • Address a range of network operation and management scenarios
 • Encompass (without changing) existing profiles of the architecture
 • Embrace SDN and NFV without becoming focused or obsessed with them
 • Highlight existing protocols and components
Application-Based Network Operation (ABNO)

- Application-Based Network Operations
 - A PCE-based Architecture for Application-based Network Operations
 - draft-farrkingel-pce-abno-architecture

- Network Controller Framework
 - Avoiding single technology domain "controller" architecture
 - Reuse well-defined components and protocols
 - Discovery of network resources and topology management.
 - Routing and path computation
 - Multi-layer coordination and interworking
 - Policy Control
 - OAM and performance monitoring

- Support a variety of southbound protocols
 - Leveraging existing technologies, support new ones

- Integrate with defined and developing standards, across SDOs
ABNO – Functional Components

• “Standardized” components
• Policy Management
• Network Topology
 • LSP-DB
 • TED
 • Inventory Management
• Path Computation and Traffic Engineering
 • PCE, PCC
 • Stateful & Stateless
 • Online & Offline
 • P2P, P2MP, MP2MP
• Multi-layer Coordination
 • Virtual Network Topology Manager
• Network Programming and Signalling
 • ForCES
 • OpenFlow
 • Interface to the Routing System
 • PCEP
 • RSVP-TE

Figure 1: Generic ABNO Architecture
Compare ABNO with SDN Architecture

- A richer function-set based on the same concepts
- Enables the use of OpenFlow and other protocols
- There are implementation/deployment choices to be made

Minimum required for SDN controller of infrastructure

Applications

Application-controller plane i/f

Orchestrator

OpenFlow Northbound

Controllers

OpenFlow

What is required for commercial deployment of SDN control platforms for real networks
ABNO Implementation and Research

• There are a number of experimental implementations of ABNO
 • Most notable was a demonstration of Packet-Transport Integration
 • Packet devices from Juniper Networks
 • Optical devices from Infinera
 • ANBO-based Transport SDN from Telefonica
 • Telefonica has also tested with ADVA and Ciena

• Multiple research projects examining the use of ABNO...
FP7 “IDEALIST” Project

• Industry-Driven Elastic and Adaptive Lambda Infrastructure for Service and Transport (IDEALIST) Networks
 • The work is partially funded by the European Community’s Seventh Framework Programme FP7/2007-2013 through the Integrated Project (IP) IDEALIST under grant agreement nº 317999.
 • www.ict-idealist.eu

• The network architecture proposed by IDEALIST is based on four technical cornerstones:
 • An optical transport system enabling flexible transmission and switching beyond 400Gbps per channel
 • Control plane architecture for multi-layer and multi-domain optical transport network, extended for flexi-grid labels and variable bandwidth.
 • Dynamic network resources allocation at both IP packet and optical transport network layer
 • Multilayer network optimization tools enabling both off-line planning, on-line network reoptimization in across the IP and optical transport network
 • These tools are called Adaptive Network Management (ANM)
 • They are based on the ABNO architecture
 • Implementations exist!
FP7 IDEALIST Findings - Articles & Input to SDOs

• Publications (just a few)
 • In-Operation Network Planning
 IEEE Communications Magazine
 • Experimental Demonstration of an Active Stateful PCE performing Elastic Operations and Hitless
 Defragmentation
 ECOC European Conference on Optical Communications
 • Planning Fixed to Flexgrid Gradual Migration: Drivers and Open Issues
 IEEE Communications Magazine
 • Dynamic Restoration in Multi-layer IP/MPLS-over-Flexgrid Networks
 IEEE Design of Reliable Communication Networks (DRCN)
 • A Traffic Intensity Model for Flexgrid Optical Network Planning under Dynamic Traffic Operation
 OSA Optical Fiber Communication (OFC)

• Standards Input
 • Unanswered Questions in the Path Computation Element Architecture
 • A PCE-based Architecture for Application-based Network Operations
Other FP7 Projects with ABNO

• **FP7 OFERTIE** (www.ofertie.org) Enhances the OFELIA testbed facility to allow researchers to request, control and extend network resources dynamically

• **FP7 DISCUS** (www.discus-fp7.eu) Distributed Core for unlimited bandwidth supply for all Users and Services

• **FP7 CONTENT** (www.content-fp7.eu) Convergence of Wireless Optical Network and IT Resources in Support of Cloud Services

• **FI-PPP XIFI** (www.wiki.fi-xifi.eu) Creating a multi-DC commun cloud across Europe
 - Flexible User Interface
 - Federated Cloud and Service Management
 - Dynamic Network Management
 - Resource Monitoring
TOUCAN

• Towards Ultimate Convergence of All Networks (TOUCAN)
• A UK funded project for 5 years from August 2014
• Academic Leadership
 • Lancaster, Heriot Watt, Edinburgh, and Bristol Universities
• Technology Partners
 • BT, Plextek, NEC, Samsung, JANET, and Broadcom
• Technology agnostic architecture for convergence based on SDN principles
 • Facilitate optimal interconnection of any network technology domains, networked devices and data sets with high flexibility, resource, and energy efficiency
 • Widely diverse networking technologies
 • Fiber-optic core
 • DSL, GigE
 • GSM/LTE
 • WiFi
 • Sensors
 • Service driven control with on demand delivery across virtualised infrastructure
 • Optimization based on capacity, connectivity, spectrum utilization, resource allocation and energy efficiency
 • Commoditisation of network and IT hardware devices
 • Exploit notion of adaptivity and programmability for optimal IT resource and workload allocation
• Investigating ABNO architecture as a cornerstone
The PACE Project

- Next Steps in PAth Computation Element (PCE) Architectures
- FP7 Coordination and Support Action
- Education and dissemination of PCE concepts
 - Tutorials, papers, knowledge base, outreach
- Development and applicability of new uses of PCE
 - Including SDN and NFV through support of ABNO
- Consolidate and coordinate existing (OpenSource) PCE developments
- http://www.ict-pace.net/
 - Funding from the European Union's Seventh Framework Programme for research, technological development and demonstration through the PACE project under grant agreement number 619712
ABNO and Research - Next Steps

• The research community is already embracing ABNO
• That should lead to important feedback
 • What is not clear in the architecture?
 • What pieces are missing or wrong?
 • How well do implementations behave?
 • How is PCE integrated into the whole?
 • What new PCE algorithms are needed?
 • How does PCEP need to be enhanced?
 • What new network types can be managed?
 • How can NFV, SFC, and network slicing be operated?
 • What are the security, management, and economic implications?
ABNO and Industry / Standards

• draft-farrkingel-pce-abno-architecture will soon be published as an RFC
 • It is informational and not a mandatory standard
 • It leaves a number of interfaces unspecified
 • For example, service request interface
 • It presents too many choices
 • Next steps
 • Applicability statements to show how to profile ABNO for specific environments
 • A few are captured in the draft
 • More (such as SDN) could be documented
 • New requirements documents and protocol specifications to fill the gaps

• This work will be done in coordination with industry
 • What do people really want to build and deploy?
Assertions

• PCE is here to stay as a functional component of SDN
• Implementing PCE as a distinct unit enables
 • Scaling
 • Load-balancing
 • Rapid advancement of algorithms
• That means PCEP is a necessary protocol for accessing PCE
• PCEP can be used as a “provisioning protocol”
 • Most clear use in circuit-switched networks (MPLS-TE, GMPLS, ...)
 • Jury is out on the use of PCEP as a per-node control protocol
• SDN should be seen as a critical part of a wider view of network operation
• Re-use of components and protocols makes sense
• The ABNO architecture embraces SDN and factors it into the bigger picture
References

- The PACE project “PCE Primer”
- Path Computation Element Tutorial
 http://www.olddog.co.uk/Farrel_PCE_Tutorial.ppt
- IETF’s PCE Working Group
 https://datatracker.ietf.org/wg/pce/documents/
- RFC 4655, “A Path Computation Element (PCE)-Based Architecture”
 https://www.rfc-editor.org/rfc/rfc4655.txt
- RFC 5440, “Path Computation Element Communications Protocol”
 https://www.rfc-editor.org/rfc/rfc5440.txt
- RFC 6805, “Hierarchical PCE”
 https://www.rfc-editor.org/rfc/rfc6805.txt
 https://www.ietf.org/id/draft-farrkingel-pce-abno-architecture
- draft-ietf-pce-questions, “Unanswered Questions in the Path Computation Element Architecture”
 https://www.ietf.org/id/draft-ietf-pce-questions
- “PCE: What is It, How Does It Work and What are its Limitations?”
- “In-Operation Network Planning”
- “Towards a carrier SDN: an example for elastic inter-datacenter connectivity”
 Optics Express, 2014.
- “PCEP - A Protocol for All Uses? How and when to extend an existing protocol”
 PACE Workshop, 2014.
- “A Survey on the Path Computation Element (PCE) Architecture”
 IEEE Communications Surveys and Tutorials, 2013.
- “Using the Path Computation Element to Enhance SDN for Elastic Optical Networks (EON)”
 iPOP Tokyo, 2013.
Questions?

Follow-up

adrian@olddog.co.uk
d.king@lancaster.ac.uk