# Research and Development Advances in Routing for "Future Internet"

Adrian Farrel

adrian@olddog.co.uk

FIPE Side Meeting: IETF-109 – Online, November, 2020

### Topics

- What is the Future?
- What is Driving These Discussions?
- Fertile Areas for Work
- Learning Lessons from the Past
- How to Introduce New Work in the IETF
- Where to Discuss Architecture in the IETF Context
- Research and the Internet

# The Future is Bright – But What is it?

- Lots of pizzazz and hype around 5G and the new services
- But, this is not really about 5G, it's about new services on the Internet
  - 5G just makes them more broadly available
- New services will always come along
  - Beware of using them as justification for technology
  - Look for the real services and applications
- What applications?
  - Remote surgery
  - Haptic interactions
  - Holographic conferencing
  - Multi-player VR or AR gaming
  - Vehicle automation
  - Manufacturing
  - Crowd-sourced video
  - Digital trading

# The Driver New Services Need New Network Behaviours

- Most of the new applications demand some improvement in networking
  - Greater bandwidth (throughput)
  - Lower delay (less latency)
  - Less variation in delivery time (reduced jitter)
  - More independence (less impacted by other traffic)
  - Better reliability (less packet loss / corruption)
  - Better resiliency (less affected by network failures)
  - Better security (faster, more private, more secure)
  - Better manageability (automated, flexible, responsive)
- This is not a new list!



# Where (in the stack) Could We Work?

- All layers of the stack are candidates for improved network performance
  - May be better to think in terms of IETF Areas
    - Application and Realtime Area
      - Codecs, enhanced RTP usage, improved encodings
    - Transport Area
      - Picking paths, multiplexing, improving throughput
    - Internet Area
      - New or enhanced encapsulations to carry flow-specific information, timing, IP-over-foo, compression
    - Routing Area
      - Picking routes with different qualities, directing traffic according to network variation, routing in specific environments
    - Operations and Management Area
      - Autonomics, telemetry, SDN, device identification
    - Security Area
      - Better, faster, stronger



# What Do We Know Already?

- Introducing new technology is hard
  - Backward compatibility with deployed equipment/software
  - Need to upgrade whole networks
  - Often needs a big commercial or regulatory incentive
- Many new ideas fail
  - A lot of time and money can be invested in things that never take off
- Innovation requires open doors
  - Let a thousand flowers bloom
  - Sometimes good ideas have unlikely origins
- The future is hard to predict
  - New applications and new technologies
- Evolution or Revolution?
  - Evolution may be much easier to achieve







## Bringing New Work to the IETF



- Develop some collaborators with similar interest
  - Not just names, but people who want to do the work
  - Multi-vendor súpport
- Write some initial Internet-Drafts
- Maybe have some Bar BoFs or side meetings
- Talk to Area Directors in the relevant area
  - This is usually missing or late
- Propose a BoF (drafts, charter, agenda all needed)
  "Most successful requests are due to good proponent preparation" Alvaro Retana RTG AD
  Getting early input from IESG and IAB is essential
- Hold the BoF (Consensus determines the next steps)
  - Identify meaningful work to be done in the IETF
    Protocol work
- Charter bashing
  - Most edits are about clarity and scope
- Working Group formed
- Check out ... Tutorial on Bringing New Work to the IETF:
   slides: <a href="https://datatracker.ietf.org/doc/slides-103-edu-sessl-bringing-new-work-to-the-ietf/">https://datatracker.ietf.org/doc/slides-103-edu-sessl-bringing-new-work-to-the-ietf/</a>
   video: <a href="https://www.youtube.com/watch?v=YnK3rsZG4Ec">https://www.youtube.com/watch?v=YnK3rsZG4Ec</a>

# Some Experience of Recent Routing Innovation

|                         | RIFT                                                                                | BABEL                                                                                 | Segment Routing                                                            | PCE                                                                                                       | SFC                                                        |
|-------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Problem space           | Data centre routing : limited domain                                                | Specialist networks                                                                   | WAN and backbone networks                                                  | Specific domains and backbone networks                                                                    | Specific domains and provider networks                     |
| Early support           | Single vendor                                                                       | University research                                                                   | Single vendor with some university support                                 | Single vendor with support of several operators                                                           | Multi-vendor and operator interest                         |
| Running code            | Public "open source"                                                                | Open source                                                                           | Private proof of concept                                                   | Private proof of concept                                                                                  | None                                                       |
| Ease of deployment      | Software upgrade to all routers in a domain                                         | Software upgrade to all routers in a domain                                           | Software upgrade to key routers. Firmware upgrade in some cases.           | Software upgrade to key routers. Addition of a server                                                     | Deployed as an overlay                                     |
| Introduction<br>to IETF | BoF describing whole problem space and discussing working code. WG formed for RIFT. | Published through Independent Stream as experimental. WG formed to enhance protocols. | BoF held with some description of protocol solutions and 10 drafts posted. | Two BoFs needed to define problem space. Work on requirements and architecture before solution protocols. | Mailing list established. BoF held after 21 drafts posted. |

#### Internet Architecture and the IETF



- The IETF's mission statement is:
  - "to make the Internet work better by producing high quality, relevant technical documents that influence the way people design, use, and manage the Internet"
  - That should include planning the future architecture of the Internet
  - But principally, the IETF engages in solving immediate engineering problems
    - 1 to 5 year horizon
    - Standardisation for deployment
- The IAB:
  - "provides long-range technical direction for Internet development"
  - That makes it the forum for longer-term, strategic work
  - The IAB maintains a mailing list "for all long and/or wide range architectural concerns related to the Internet Architecture"
    - "In particular, it may be used to discuss and bring forth different points of view on controversial architectural questions"
  - architecture-discuss@ietf.org
  - The IAB may set up a "Program" or hold a "Workshop" to study a particular point
- Internet-Drafts remain the best way to state a position for wider discussion

#### Research and the Internet



- The Internet Research Task Force (IRTF)
  - "promotes research of importance to the evolution of the Internet protocols, applications, architecture and technology"
- Key words "promotes research" not "does research"
  - "promote the development of research collaboration and teamwork in exploring research issues"
- It's a place to bring your research for discussion and coordination
- Research Groups provide focus
  - A new RG might be set up if there is evidence of an emerging research area
    - In other words, if people are actively engaged in research work outside the IRTF

#### What Research?

- What applications and services do we really need to support?
  - There is a difference between dreams and immediacy
- How can we enhance network performance to meet the requirements of new applications?
  - · Packet marking and metadata
  - Modifications to routing protocols
- What can we achieve by enhancing tunnelling and transport protocols?
  - What have we learnt from RTP, QUIC, and MPTPC?
- What could we do through better operations and management?
- How should we design our applications to handle network effects?
  - Don't we already do this?
- What form does research take?
  - Experimental protocols and implementations
  - Quantitative measurements of network behaviour
- Where can we do our research?
  - Universities and corporate research labs
  - Publish in journals and at the IRTF



## Outlook for Internet Routing

- Improved security for routing protocols
  - Continues to be a neglected aspect of Internet routing
  - Particularly interesting for inter-domain routing
  - Research in MANRS
- Telemetry and diagnostics
  - Specific to the operation of the routing subsystem
  - Various IETF projects, but no overall architecture
- Provision of routes for specific service qualities
  - Measurement of behaviour of network nodes and links
  - Specification by applications of service requirements
  - Marking of packets according to service requirements
  - Routing of marked packets onto path that best deliver service requirements
  - IETF Network Slicing and Application-aware Networking (APN)
- Routing for specialised environments
  - Closed networks have specialised needs
    - Data centres
    - Satellite networks
    - Inter-planetary networking
    - IoT networks (factories, streets, homes, ...)
  - A lot of IETF projects (BABEL, ROLL, DetNet, DTN, RIFT, ....)
  - Lots more potential



## Far Distance for Internet Routing

- Continued examination of addressing schemes
  - Hierarchical addressing
    - Functional decomposition
      - Part of an address has a non-routing meaning
      - Identifies a function or content (see also, Segment Routing)
    - Geographic decomposition
      - Addresses are structured like NSAPs or telephone numbers
  - Research target
    - Impact on legacy addressing and routing schemes
    - Implications for global routing, privacy, and geopolitics
- Service routing and semantic routing
  - Avoid DNS latency using a Service ID hashed from target domain/service name
    - Route based on Service ID with updates to routing protocols
  - Research target
    - How does this scale?
    - Can it be applied to specific scenarios?
      - Private networks (local or worldwide)
      - Multi-access edge computing (MEC)
      - Overlay networks (tunnels between Service routers)



# Questions and Follow-up



adrian@olddog.co.uk