Why Should Semantic Routing Worry You?

What must we do? What must we not do?

Adrian Farrel (adrian@olddog.co.uk)

RTGWG Virtual Interim Meeting: June 21st, 2022

Just Follow Good Engineering Practices?

- None of this should come as a surprise
 - But we need to constrain how we think about Semantic Routing
- Scope the requirements
 - What problems are we really solving?
- Design well
 - Keep it simple
- Test carefully
 - Think hard and use realistic networks with plenty of failure cases
- But...
 - The Internet routing system is fragile
 - Routing is complicated
 - History tells us that design is often incomplete, and testing is patchy
- Expand on the presentation at IETF-113
 - Reference draft-king-irtf-challenges-in-routing

Specific Concerns around Semantic Routing

- Backwards compatibility
- Deployability
- Wide/general utility
- Future-proofing
- Scalability and stability
- Manageability
- Privacy and security

Backward Compatibility

- It would be nice to not break the Internet
- New approaches must coexist with existing techniques

Some of this plays into Deployability...

Deployability

- All approaches are likely to need software/firmware updates
 - Means brownfield deployments are 'hard'
- Replacing IPv6 with something new seems like a poor choice
- But there are still options for deployment
 - Overlay ("layer 3.5")
 - Underlay ("layer 2.75")
 - Coexistence ("ships in the night")
 - Greenfield, silos, walled gardens
- Refer to Dirk's architecture discussion coming next

Wide/General Utility

- "Walled garden" solutions can be effective
 - Efficiently solve a niche problem in a private network
 - No worries about interworking
- But
 - Development costs mount as the number of niches multiplies
 - Wheels get reinvented and mistakes are repeated
 - Deployment gets complex as functional domains overlap
- Questions are about interconnections and interoperability
 - What happens if a packet "escapes" from the walled garden?
 - "The whole point of the Internet is end-to-end connectivity"
- Wouldn't it be nice if we could invent one solution that addresses multiple/all current and future requirements?...

Future-Proofing

- It seems unlikely that we can capture every feature and requirement
- Solutions should be extensible by design
 - Easy to add new features
 - Forward and backward compatibility built in
- In practice, that means
 - Leave some space in encodings for additional data
 - Use extensible encoding techniques (such as TLVs)
- But beware of the effect that has on scalability...

Scalability and Stability

- Scalability applies across the routing and forwarding components
- Extensible encapsulation encodings run the risk of growing large
 - Simply too much data in the packet header ("cell tax")
 - Hard to parse at line rate
- Support for additional information distributed by routing protocols
 - How much information?
 - How often do changes need to be flooded?
- What happens when there is a change in the network?
- Do all network nodes need the same information and algorithms?

Manageability

- Why do we always leave OAM until after we have developed protocols?
- Semantic Routing may have specific OAM challenges
 - Complex to look at the network and know how packets will be forwarded
 - Packet traces can tell you how a packet was forwarded but not:
 - How the previous packet was forwarded
 - How the next packet will be forwarded

Privacy and Security

- Security may be more about subversion of the network
 - More information used to determining forwarding increase the attack surface
 - If the network is fragile it is easier to break it
- Privacy is about working out what the users might be doing
 - It must not be possible to determine a user's identity from Semantic Routing
 - That is, no further than can be done from source and destination addresses
 - It must not be possible to determine which applications a user is running
 - That is, no further than can be done by inspecting pattens of traffic
 - Semantic Routing must not add information to the packet that violates this
- Consider also Net Neutrality
- There is <u>no</u> trade-off between information to route/forward and privacy
 - Semantic Routing must use abstract parameters to select forwarding behavior

What to do with this?

- Take these thoughts forward into discussion of Semantic Routing
- What are the architectural decisions?
- Which protocol approaches to choose?
- Whether to do this at all?